49 resultados para carbon dioxide fixation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of oxygen in the presence of carbon dioxide has been investigated by cyclic voltammetry at a gold microdisk electrode in the two room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222] [N(Tf)(2)]). With increasing levels of CO2, cyclic voltammetry shows an increase in the reductive wave and diminishing of the oxidative wave, indicating that the generated superoxide readily reacts with carbon dioxide. The kinetics of this reaction are investigated in both ionic liquids. The reaction was found to proceed via a DISP1 type mechanism in [EMIM][N(Tf)(2)] with an overall second-order rate constant of 1.4 +/- 0.4 x 10(3) M-1 s(-1). An ECE or DISP1 mechanism was determined to be the most likely pathway for the reaction in [N-6222][N(Tf)(2)], with an overall second-order rate constant of 1.72 +/- 0.45 x 10(3) m(-1) s(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of such solutes such as halides and water on the physical properties of room temperature ionic liquids (RTILs) have been extensively studied, This work examines the effect of the solute carbon dioxide on the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(2)mim][NTf2]) and its influence on the electrochemical characterization of the important redox couple ferrocene/ferrocenium (Fc/Fc(+)). The system was studied using cyclic voltammetry, chronoamperometry, and electron spin resonance (ESR) spectroscopy. Addition Of 100% CO2 to a solution of Fc in [C(2)mim][NTf2] resulted in a substantial increase in both the limiting oxidative current and diffusion coefficient of Fc. Arrhenius plots of Fc diffusion coefficients in the pure and CO2-saturated ionic liquid revealed a decrease in activation energy of translational diffusion from 29.0 (+/- 0.5) kJ mol(-1) to 14.7 (+/- 1.6) kJ mol(-1), suggesting a reduction in the viscosity of the ionic liquid with addition Of CO2. ESR spectroscopy was then used to calculate the rotational correlation coefficients of a probe molecule, 2,2,6,6-tetramethyl-1-piperinyloxyl (TEMPO), to add supporting evidence to this hypothesis. Arrhenius plots of rotational correlation coefficients in the pure and CO2-saturated ionic liquid resulted in a similar drop in activation energy from 28.7 (+/- 2.1) kJ mol(-1) to 18.2 (+/- 5.6) kJ mol(-1). The effect of this solute on the ionic liquid [C(2)mim][NTf2] and on the electrochemical measurements of the Fc/Fc(+) couple emphasizes the necessity of fastidious sample preparation, as it is clear that the voltammetric currents of the electroactive species under study are influenced by the presence of CO2 in solution. The voltammetric response of the electroactive species in RTILs cannot be assumed to be independent of other solutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe perfluoropolyether (PFPE) surfactants which are capable of stabilising the water/CO2 interface and present FTIR spectroscopic evidence for the formation of water in supercritical carbon dioxide microemulsions. A wide variety of single chain surfactants of differing chain lengths but similar structure has been screened and the effect of the surfactant chain length on the water uptake was studied. The ammonium carboxylate of the PFPE surfactant Krytox FSL(TM) with an average molecular weight of 2500 g mol(-1) was demonstrated to be the surfactant capable of dissolving the most water out of all the tested surfactants and hence to have the optimum chain length. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-based colourimetric indicator films are shown to have increased operational lifetimes under ambient conditions compared to similar solvent-based counterparts. The response and sensitivity characteristics of a water-based, carbon dioxide-responsive ink are characterised and compared and contrasted to those of a similar solvent-based indicator. The changes in the response characteristics of the ink as a function of the amount of base (sodium hydrogen carbonate) and plasticizer (glycerol) contained in the ink are reported, as are the effects of varying ambient temperature and humidity. The ink is incorporated into a felt tip pen and applied to a number of different substrates, producing a distinct, reversible colour change on all tested surfaces, when a sufficient level of carbon dioxide is present. The possible application of the indicator is discussed briefly.