175 resultados para calcium–strontium activated contraction
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
BACKGROUND & AIMS: Downstream effects of muscarinic receptor stimulation in intestinal smooth muscle include contraction and intestinal transit. We thought to determine whether classic transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx, and cell responses. METHODS: We created trpc4-, trpc6-, and trpc4/trpc6-gene-deficient mice and analyzed them for intestinal smooth muscle function in vitro and in vivo. RESULTS: In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies more than 80% of the muscarinic receptor-induced cation current (mI(CAT)). The residual mI(CAT) depends on the expression of TRPC6, indicating that TRPC6 and TRPC4 determine mI(CAT) channel activity independent of other channel subunits. In TRPC4-deficient ileal myocytes the carbachol-induced membrane depolarizations are diminished greatly and the atropine-sensitive contraction elicited by acetylcholine release from excitatory motor neurons is reduced greatly. Additional deletion of TRPC6 aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPC6. CONCLUSIONS: In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by muscarinic receptors and are responsible for mI(CAT). They couple muscarinic receptors to depolarization of intestinal smooth muscle cells and voltage-activated Ca(2+)-influx and contraction, and thereby accelerate small intestinal motility in vivo.
Resumo:
Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor alpha (TNFalpha). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFalpha resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFalpha-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca(2+) release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5'-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5' portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFalpha, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.
Resumo:
In this work, the rate-limiting steps of reactive dye adsorption onto FS-400 activated carbon were elucidated through the investigation of adsorption kinetics. These studies initially revealed that only 20% of the available adsorption capacity was achieved during the first 6 h of mixing. Kinetic profiles showed that the adsorption process was mainly controlled by external diffusion during the first 30 min of the reaction, after which internal diffusion controlled the process. The interruption test method identified the rate-limiting steps; the results showed that sorption of reactive dyes onto FS-400 was mainly controlled by internal diffusion. Furthermore, the external and internal diffusion coefficients and the desorption rate decreased after the interruption period. The same parameters increased when the solution temperature was raised. The thermodynamic parameters studied showed that the adsorption of reactive dyes onto activated carbon was endothermic and is mainly controlled by internal diffusion with a minor effect of external diffusion.