4 resultados para calcein

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-1-antitrypsin (A1AT) deficiency is characterized by increased neutrophil elastase (NE) activity and oxidative stress in the lung. We hypothesized that NE exposure generates reactive oxygen species by increasing lung nonheme iron. To test this hypothesis, we measured bronchoalveolar lavage (BAL) iron and ferritin levels, using inductively coupled plasma (ICP) optical emission spectroscopy and an ELISA, respectively, in A1AT-deficient patients and healthy subjects. To confirm the role of NE in regulating lung iron homeostasis, we administered intratracheally NE or control buffer to rats and measured BAL and lung iron and ferritin. Our results demonstrated that A1AT-deficient patients and rats postelastase exposure have elevated levels of iron and ferritin in the BAL. To investigate the mechanism of NE-induced increased iron levels, we exposed normal human airway epithelial cells to either NE or control vehicle in the presence or absence of ferritin, and quantified intracellular iron uptake using calcein fluorescence and ICP mass spectroscopy. We also tested whether NE degraded ferritin in vitro using ELISA and western analysis. We demonstrated in vitro that NE increased intracellular nonheme iron levels and degraded ferritin. Our results suggest that NE digests ferritin increasing the extracellular iron pool available for cellular uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells.

Methods
Activated blood neutrophils (CF and healthy) treated ± DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o- epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ± DX-890 and NE or CF sputum.

Results
DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p < 0.05).

Conclusions
DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofilms [1], displaying potential for use in the prevention of medical device-related infections [2]. Analysis of fluorescence micrographs, after staining with calcein AM and DAPI, shows the likely mode of cytotoxic action of cationic antimicrobial peptides and lipopeptides are via directmembrane disruption in eukaryotic cells. Selectivity is towards cidal action against prokaryotic cells, whose membranes are anionic in composition, such as those of bacteria, rather than for neutral zwitterionic membranes of eukaryotic cells. Membrane selectivity is determined by a multitude of physical parameters, particularly charge and hydrophobicity. The charge of the antimicrobial determines the extent of the initial electrostatic interactions with both prokaryotic and eukaryotic membranes, with a larger cationic charge favoring antimicrobial action. Tailoring of these properties is likely to be the key in successfully transferring antimicrobial peptides from laboratory experiments into clinical practice as safe pharmaceutical formulations.