85 resultados para body sensors

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of millimetre wave and terahertz systems to penetrate clothing is well known. The fact that the transmission of clothing and the reflectivity of the body vary as a function of frequency is less so. Several instruments have now been developed to exploit this capability. The choice of operating frequency, however, has often been associated with the maturity and the cost of the enabling technology rather than a sound systems engineering approach. Top level user and systems requirements have been derived to inform the development of design concepts. Emerging micro and nano technology concepts have been reviewed and we have demonstrated how these can be evaluated against these requirements by simulation using OpenFx. Openfx is an open source suite of 3D tools for modeling, animation and visualization which has been modified for use at millimeter waves. © 2012 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: