6 resultados para block copolymer homopolymer mixtures

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using fluorescence microscopy, DSC and DMTA we have explored blends of a bitumen with a styrene-butadiene-styrene (SBS) block copolymer, and with blends of the bitumen with SBS and one or two homopolymers - a polystyrene and a poly(cis-butadiene). The SBS polymer was progressively replaced with quantities of the homopolymers both together in the proportions found in the block copolymer and then by each homopolymer separately. At low temperatures the blends are all softer than the bitumen itself, so the polymers plasticise the bitumen-rich phase, and above 50°C the blends' stiffness (E') falls below a plateau only when a critical proportion of the block copolymer has been replaced with the two homopolymers: this supports the idea of an extensive network created by the polystyrene-rich spherical microphases that is effective even when the polystyrene microphases have melted. In one polymer blend the stiffness rose as the temperature was raised above 100°C, suggesting the development of a mesophase based upon polybutadiene plus asphaltenes, in another E' was enhanced and E" remained constant as the temperature rose above 70°C, perhaps for a similar reason; in some loss process appeared and the stiffness fell as temperature rose; but in others a good part of the SBS was replaced by either polystyrene or polybutadiene without changing the appearance of a rubbery plateau, that is, without a diminution of the mechanical properties of the soft matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface patterning in three dimensions is of great importance in biomaterials design for controlling cell behavior. A facile one-step functionalization of biodegradable PDLLA fibers using amphiphilic diblock copolymers is demonstrated here to systematically vary the fiber surface composition. The copolymers comprise a hydrophilic poly[oligo(ethylene glycol) methacrylate] (POEGMA), poly[(2-methacryloyloxy)ethyl phosphorylcholine] (PMPC), or poly[2-(dimethylamino)ethyl methacrylate)] (PDMAEMA) block and a hydrophobic poly(l-lactide) (PLA) block. The block copolymer-modified fibers have increased surface hydrophilicity compared to that of PDLLA fibers. Mixtures of PLAPMPC and PLAPOEGMA copolymers are utilized to exploit microphase separation of the incompatible hydrophilic PMPC and POEGMA blocks at the fiber surface. Conjugation of an RGD cell-adhesive peptide to one hydrophilic block (POEGMA) using thiol-ene chemistry produces fibers with domains of cell-adhesive (POEGMA) and cell-inert (PMPC) sites, mimicking the adhesive properties of the extracellular matrix (ECM). Human mesenchymal progenitor cells (hES-MPs) showed much better adhesion to the fibers with surface-adhesive heterogeneity compared to that to fibers with only adhesive or only inert surface chemistries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of supramolecular aggregates were prepared using a poly(propylene oxide) poly(ethylene oxide) poly(propylene oxide) (PPO-PEO-PPO) block copolymer and beta- or alpha-cyclodextrins (CD). The combination of beta-CD and the copolymer yields inclusion complexes (IC) with polypseudorotaxane structures. These are formed by complexation of the PPO blocks with beta-CD molecules producing a powder precipitate with a certain crystallinity degree that can be evaluated by X-ray diffraction (XRD). In contrast, when combining alpha-CD with the block copolymer, the observed effect is an increase in the viscosity of the mixtures, yielding fluid gels. Two cooperative effects come into play: the complexation of PEO blocks with alpha-CD and the hydrophobic interactions between PPO blocks in aqueous media. These two combined interactions lead to the formation of a macromoleculaf network. The resulting fluid gels were characterized using different techniques such as differential scanning calorimetry (DSC), viscometry, and XRD measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of polymersome-forming block copolymers using two different synthetic routes based on Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Fragmentation chain Transfer (RAFT) polymerization, respectively. Functionalization with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) allowed the block copolymer chains to be labelled with electron-dense metal ions (e.g. indium). The resulting metal-conjugated copolymers can be visualized by transmission electron microscopy with single chain resolution, hence enabling the study of polymer/polymer immiscibility and phase separation on the nano-scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (H-1 NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW ((M) over bar (w)) and the number of arms of the stars. The R, of the stars ranged between 359,000 and 565,000 g mol(-1), while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA(10)-b-MMA(30)-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMA-EMA(10)-b-MMA(30)-Star, which gave a very opaque solution over the whole pH range. (c) 2006 Elsevier Ltd. All rights reserved.