10 resultados para benthic algal communities

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacterial community composition and biomass abundance from a depositional mud belt in the western Irish Sea and regional sands were investigated by phospholipid ester-linked fatty acid profiling, denaturing gradient gel electrophoresis and barcoded pyrosequencing of 16S rRNA genes. The study area varied by water depth (12-111 m), organic carbon content (0.09-1.57% TOC), grain size, hydrographic regime (well-mixed vs. stratified), and water column phytodetrital input (represented by algal polyunsaturated PLFA). The relative abundance of bacterial-derived PLFA (sum of methyl-branched, cyclopropyl and odd-carbon number PLFA) was positively correlated with fine-grained sediment, and was highest in the depositional mud belt. A strong association between bacterial biomass and eukaryote primary production was suggested based on observed positive correlations with total nitrogen and algal polyunsaturated fatty acids. In addition, 16S rRNA genes affiliated to the classes Clostridia and Flavobacteria represented a major proportion of total 16S rRNA gene sequences. This suggests that benthic bacterial communities are also important degraders of phytodetrital organic matter and closely coupled to water column productivity in the western Irish Sea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although interactions between seaweeds and sponges have been studied in detail, general information concerning the whole epibiontic algal assemblage associated with a sponge species is virtually non-existent. We present here the first study in which the macroalgal community associated with a sponge, Haliclona indistincta (Bowerbank), was examined in detail. In the period October 2009-September 2010, the seaweed assemblage epibiontic on H. indistincta at a site of the Irish West coast was composed of 66 algal taxa (48 red algae, 7 green algae, 11 brown algae). The red algae Gelidium spinosum and Rhodothamniella floridula were the only epibionts associated with H. indistincta for the whole annual cycle. Most of the algal epibionts were filamentous species, which colonized the surface of the sponge and did not penetrate deeply into it. The algal assemblage was most abundant and species-diverse in the period late winter-spring; multivariate analyses revealed a significant variation of the community on the temporal scale of season and sampling date (weeks to months). The results indicate that the algal communities associated with sponges may be very diverse, showing that this type of assemblage deserves further detailed studies. © 2012 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The consequences of biodiversity loss in the face of environmental change remain difficult to predict, given the complexity of interactions among species and the context-dependency of their functional roles within ecosystems. Predictions may be enhanced by studies testing how the interactive effects of species loss from different functional groups vary with important environmental drivers. On rocky shores, limpets and barnacles are recognised as key grazers and ecosystem engineers, respectively. Despite the large body of research examining the combined effects of limpet and barnacle removal, it is unclear how their relative importance varies according to wave exposure, which is a dominant force structuring intertidal communities. We tested the responses of algal communities to the removal of limpets and barnacles on three sheltered and three wave-exposed rocky shores on the north coast of Ireland. Limpet removal resulted in a relative increase in microalgal biomass on a single sheltered shore only, but led to the enhanced accumulation of ephemeral macroalgae on two sheltered shores and one exposed shore. On average, independently of wave exposure or shore, ephemeral macroalgae increased in response to limpet removal, but only when barnacles were removed. On two sheltered shores and one exposed shore, however, barnacles facilitated the establishment of fucoid macroalgae following limpet removal. Therefore, at the scale of this study, variability among individual shores was more important than wave exposure per se in determining the effect of limpet removal and its interaction with that of barnacles. Overall, these findings demonstrate that the interactive effects of losing key species from different functional groups may not vary predictably according to dominant environmental factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef fish communities in the Seychelles are highly diverse and remain less affected by the direct impacts of human activities than those on many other coral reefs in the Indian Ocean. These factors make them highly suitable for a detailed survey of the impacts of the 1998 mass coral mortality, which devastated the coral faunas of the region. Using underwater visual census (UVC) techniques, fish communities were sampled in three localities in the southern Seychelles and one locality in the northern (granitic) Seychelles. Initial surveys were undertaken from the latter site in 1997. Surveys were undertaken at all sites during the coral bleaching episode in 1998 prior to any major changes in the reef fish communities. Repeat surveys were undertaken in 1999 one year after the coral mortality. Over 250 fish species were sampled from 35 families. Results suggest that changes in the overall fish community structures are not great, despite massive changes in the benthic cover. Significant changes have been observed in a number of individual species. These include those most heavily dependent on live coral cover for shelter or sustenance. Future potential changes are discussed, and potential management interventions are considered. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological invasions, nutrient enrichment and ocean warming are known to threaten biodiversity and ecosystem functioning. The independent effects of these ecological stressors are well studied, however, we lack understanding of their cumulative effects, which may be additive, antagonistic or synergistic. For example, the impacts of biological invasions are often determined by environmental context, which suggests that the effects of invasive species may vary with other stressors such as pollution or climate change. This study examined the effects of an invasive seaweed (Sargassum muticum) on the structure and functioning of a benthic marine assemblage and tested explicitly whether these effects varied with nutrient enrichment and ocean warming. Overall, the presence of Sargassum muticum increased assemblage productivity rates and warming altered algal assemblage structure, which was characterised by a decrease in kelp and an increase in ephemeral green algae. The effects of Sargassum muticum on total algal biomass accumulation, however, varied with nutrient enrichment and warming producing antagonistic cumulative effects on total algal biomass accumulation. These findings show that the nature of stressor interactions may vary with stressor intensity and among response variables, which leads to less predictable consequences for the structure and functioning of communities.