14 resultados para assemblage structure

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from a hierarchical study of four Zostera marina beds in Wales were used to identify the spatial scales of variation in epiphyte assemblages. There were significant within and among bed differences in assemblage structure. The differences in assemblage structure with spatial scale generally persisted when species identifications were aggregated into functional groups. There was also significant within and among bed variability in Zostera density and average length. Local variations in Zostera canopy variables at the quadrat scale (total leaf length, average leaf length and leaf density per quadrat) were not related to epiphyte species richness nor to the structure of the assemblage. In contrast, individual leaf length was significantly related to species richness in two of the beds and the structure of epiphyte assemblages was always related to individual leaf lengths. The absence of links between quadrat scale measurements of canopy variables and assemblage structure may reflect the high turnover of individual Zostera leaves. Experimental work is required to discriminate further between the potential causes of epiphyte assemblage variation within and between beds. No bed represented a refuge where a rare species was abundant. If a species was uncommon at the bed scale, it was also uncommon in beds where it occurred. The heterogeneous assemblages found in this study suggest that a precautionary approach to conservation is advisable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ecosystems. Coastal oceanic upwelling, for example, has been associated with elevatedbiomass and abundance patterns of certain functional groups, e.g., corticated macroalgae.In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthiccomposition, structure and trophic ecology across eighteen shores varying in theirproximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scalesof >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmedby the stable isotope values (δ13C and δ15N) of consumers, including a dominantsuspension feeder, grazers, and their putative resources of POM, epilithic biofilm, andmacroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel,Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previousstudies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation,ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Ourresults showed macroalgal assemblage composition, and benthic consumer assemblagestructure, varied significantly with the intertidal influence of coastal upwelling, especiallycontrasting bays and coastal headlands. Coastal topography also separated differences inconsumer resource use. This suggested that coastal upwelling, itself driven by coastlinetopography, influences intertidal communities by advecting nearshore phytoplankton populationsoffshore and cooling coastal water temperatures. We recommend the isotopic valuesof benthic organisms, specifically long-lived suspension feeders, as in situ alternativesto offshore measurements of upwelling influence

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rate of species loss is increasing on a global scale and predators are most at risk from human-induced extinction. The effects of losing predators are difficult to predict, even with experimental single species removals, because different combinations of species interact in unpredictable ways. We tested the effects of the loss of groups of common predators on herbivore and algal assemblages in a model benthic marine system. The predator groups were fish, shrimp and crabs. Each group was represented by at least two characteristic species based on data collected at local field sites. We examined the effects of the loss of predators while controlling for the loss of predator biomass. The identity, not the number of predator groups, affected herbivore abundance and assemblage structure. Removing fish led to a large increase in the abundance of dominant herbivores, such as Ampithoids and Caprellids. Predator identity also affected algal assemblage structure. It did not, however, affect total algal mass. Removing fish led to an increase in the final biomass of the least common taxa (red algae) and reduced the mass of the dominant taxa (brown algae). This compensatory shift in the algal assemblage appeared to facilitate the maintenance of a constant total algal biomass. In the absence of fish, shrimp at higher than ambient densities had a similar effect on herbivore abundance, showing that other groups could partially compensate for the loss of dominant predators. Crabs had no effect on herbivore or algal populations, possibly because they were not at carrying capacity in our experimental system. These findings show that contrary to the assumptions of many food web models, predators cannot be classified into a single functional group and their role in food webs depends on their identity and density in 'real' systems and carrying capacities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Global declines in biodiversity have stimulated much research into the consequences of species loss for ecosystems and the goods and services they provide. Species at higher trophic levels are at greater risk of human-induced extinction yet remarkably little is known about the effects of consumer species loss across multiple trophic levels in natural complex ecosystems. Previous studies have been criticized for lacking experimental realism and appropriate temporal scale, running for short periods that are not sufficient to detect many of the mechanisms operating in the field.
2. We manipulated the presence of two predator species and two groups of their prey (primary consumers) and measured their independent and interactive effects on primary producers in a natural marine benthic system. The presence of predators and their prey was manipulated in the field for 14 months to distinguish clearly the direct and indirect effects of predators on primary producers and to identify mechanisms driving responses.
3. We found that the loss of either predator species had indirect negative effects on species diversity and total cover of primary producers. These cascading effects of predator species loss were mediated by the presence of intermediate consumers. Moreover, the presence of different intermediate consumers, irrespective of the presence or absence of their predators, determined primary producer assemblage structure. We identified direct negative effects of predators on their prey and several indirect effects of predators on primary producers but not all interactions could have been predicted based on trophic level.
4. Our findings demonstrate the importance of trophic cascade effects coupled with non-trophic interactions when predicting the effects of loss of predator species on primary producers and consequently for ecosystem functioning. There is a pressing need for improved understanding of the effects of loss of consumers, based on realistic scenarios of diversity loss, to test conceptual frameworks linking predator diversity to variation in ecosystem functioning and for the protection of biodiversity, ecosystem functioning and related services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological invasions, nutrient enrichment and ocean warming are known to threaten biodiversity and ecosystem functioning. The independent effects of these ecological stressors are well studied, however, we lack understanding of their cumulative effects, which may be additive, antagonistic or synergistic. For example, the impacts of biological invasions are often determined by environmental context, which suggests that the effects of invasive species may vary with other stressors such as pollution or climate change. This study examined the effects of an invasive seaweed (Sargassum muticum) on the structure and functioning of a benthic marine assemblage and tested explicitly whether these effects varied with nutrient enrichment and ocean warming. Overall, the presence of Sargassum muticum increased assemblage productivity rates and warming altered algal assemblage structure, which was characterised by a decrease in kelp and an increase in ephemeral green algae. The effects of Sargassum muticum on total algal biomass accumulation, however, varied with nutrient enrichment and warming producing antagonistic cumulative effects on total algal biomass accumulation. These findings show that the nature of stressor interactions may vary with stressor intensity and among response variables, which leads to less predictable consequences for the structure and functioning of communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter-trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context-dependency of the effects of consumer species loss by conducting a 15-month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat-dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non-interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N) by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity) and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive species can impact native species and alter assemblage structure, which affects associated ecosystem functioning. The pervasive Pacific oyster, Crassostrea gigas, has been shown to affect the diversity and composition of many host ecosystems. We tested for effects of the presence of the invasive C. gigas on native assemblages by comparing them directly to assemblages associated with the declining native European oyster, Ostrea edulis. The presence of both oyster species was manipulated in intertidal and subtidal habitats and reefs were constructed at horizontal and vertical orientation to the substratum. After 12 months, species diversity and benthic assemblage structure between assemblages with C. gigas and O. edulis were similar, but differed between habitats and orientation, suggesting that both oyster species were functionally similar in terms of biodiversity facilitation. These findings support evidence, that non-native species could play an important role in maintaining biodiversity in systems with declining populations of native species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fisheries can have profound effects on epifaunal community function and structure. We analysed the results from five dive surveys (1975–1976, 1980, 1983, 2003 and 2007), taken in a Special Area of Conservation, Strangford Lough, Northern Ireland before and after a ten year period of increased trawling activity between 1985 and 1995. There were no detectable differences in the species richness or taxonomic distinctiveness before (1975–1983) and after (2003–2007) this period. However, there was a shift in the epifaunal assemblage between the surveys in 1975–1983 and 2003–2007. In general, the slow-moving, or sessile, erect, filterfeeders were replaced by highly mobile, swimming, scavengers and predators. There were declines in the frequency of the fished bivalve Aequipecten opercularis and the non-fished bivalves Modiolus modiolus and Chlamys varia and some erect sessile invertebrates between the surveys in 1975–1983 and 2003–2007. In contrast, there were increases in the frequency of the fished and reseeded bivalves Pecten maximus and Ostrea edulis, the fished crabs Cancer pagurus and Necora puber and the non-fished sea stars Asterias rubens, Crossaster papposus and Henricia oculata between the surveys in 1975–1983 and 2003–2007. We suggest that these shifts could be directly and indirectly attributed to the long-termimpacts of trawl fishing gear, although increases in the supply of discarded bait and influxes of sediment may also have contributed to changes in the frequency of some taxa. These results suggest that despite their limitations, historical surveys and repeat sampling over long periods can help to elucidate the inferred patterns in the epifaunal community. The use of commercial fishing gear was banned from two areas in Strangford Lough in 2011, making it a model ecosystem for assessing the long-term recovery of the epifaunal community from the impacts of mobile and pot fishing gear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heritable variation in plant secondary compounds in dominant species has been hypothesised to effect ecosystem function and the structure of associated assemblages of plants, microbes and animals. The functioning of this extended phenotype in relation to the understorey vegetation composition was tested within a boreal forest system dominated by Pinus sylvestris which contains a range of monoterpenes, the composition of which is largely under genetic control. A variance partitioning approach was adopted to identify the relative importance of tree chemistry, environment, spatial location and tree architecture in controlling the distribution of species in the ground flora under individual trees. The monoterpene composition of the pine needles appeared to contribute significantly to controlling understorey vegetation composition, but was less important than environmental factors, though similar to spatial factors. Thus there appears to be a link between variation in the chemical composition of the single, dominant tree species within this system and the pattern of occurrence and abundance in other species at the same trophic level.