11 resultados para aspartic acid

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) has many favourable attributes for tissue engineering scaffold applications. A major drawback, however, is its slow degradation rate, typically greater than 3 years. In this study PCL was melt blended with a small percentage of poly(aspartic acid-co-lactide) (PAL) and the degradation behaviour was evaluated in phosphate buffer solution (PBS) at 37 degrees C. The addition of PAL was found to significantly enhance the degradation profile of PCL. Subsequent degradation behaviour was investigated in terms of the polymer's mechanical properties, Molecular weight (M-w), mass changes and thermal characteristics. The results indicate that the addition of PAL accelerates the degradation of PCL, with 20% mass loss recorded after just 7 months in vitro for samples containing 8 wt% PAL. The corresponding pure PCL samples exhibited no mass loss over the same time period. In vitro assessment of PCL and PCL/PAL composites in tissue Culture medium in the absence of cells revealed stable pH readings with time. SEM studies of cell/biomaterial interactions demonstrated biocompatibility of C3H10T1/2 cells with PCL and PCL/PAL composites at all concentrations of PAL additive. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The integral membrane protein WecA mediates the transfer of N-acetylglucosamine (GlcNAc) 1-phosphate to undecaprenyl phosphate (Und-P) with the formation of a phosphodiester bond. Bacteria employ this reaction during the biosynthesis of enterobacterial common antigen as well as of many O-specific lipopolysaccharides (LPSs). Alignment of a number of prokaryotic and eukaryotic WecA-homologous sequences identified a number of conserved aspartic acid (D) residues in putative cytoplasmic loops II and III of the inner-membrane protein. Site-directed mutagenesis was used to study the role of the conserved residues D90, D91 (loop II), D156 and D159 (loop III). As controls, D35, D94 and D276 were also mutagenized. The resulting WecA derivatives were assessed for function by complementation analysis of O-antigen biosynthesis, by the ability to incorporate radiolabelled precursor to a biosynthetic intermediate, by detection of the terminal GlcNAc residue in LPS and by a tunicamycin competition assay. It was concluded from these analyses that the conserved aspartic acid residues are functionally important, but also that they participate differently in the transfer reaction. Based on these results it is proposed that D90 and D91 are important in forwarding the reaction product to the next biosynthetic step, while D156 and D159 are a part of the catalytic site of the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l-Ara4N synthesis and transfer to the LPS. The absence of l-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p <0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p <0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p <0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p <0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion and protease secretion. Here, we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine-245 and aspartic acid-536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together, we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.