8 resultados para approach bias

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The measurement of fast changing temperature fluctuations is a challenging problem due to the inherent limited bandwidth of temperature sensors. This results in a measured signal that is a lagged and attenuated version of the input. Compensation can be performed provided an accurate, parameterised sensor model is available. However, to account for the in influence of the measurement environment and changing conditions such as gas velocity, the model must be estimated in-situ. The cross-relation method of blind deconvolution is one approach for in-situ characterisation of sensors. However, a drawback with the method is that it becomes positively biased and unstable at high noise levels. In this paper, the cross-relation method is cast in the discrete-time domain and a bias compensation approach is developed. It is shown that the proposed compensation scheme is robust and yields unbiased estimates with lower estimation variance than the uncompensated version. All results are verified using Monte-Carlo simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The measurement of fast changing temperature fluctuations is a challenging problem due to the inherent limited bandwidth of temperature sensors. This results in a measured signal that is a lagged and attenuated version of the input. Compensation can be performed provided an accurate, parameterised sensor model is available. However, to account for the influence of the measurement environment and changing conditions such as gas velocity, the model must be estimated in-situ. The cross-relation method of blind deconvolution is one approach for in-situ characterisation of sensors. However, a drawback with the method is that it becomes positively biased and unstable at high noise levels. In this paper, the cross-relation method is cast in the discrete-time domain and a bias compensation approach is developed. It is shown that the proposed compensation scheme is robust and yields unbiased estimates with lower estimation variance than the uncompensated version. All results are verified using Monte-Carlo simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite 10 years of research on behavior in hypothetical referenda, conflict remains in the literature on whether or not the mechanism generates biased responses compared to real referenda, and the nature and source of any such bias. Almost all previous inquiry in respect of this issue has concentrated on bias at the aggregate level. This paper reports a series of three experiments which focuses on bias at the individual level and how this can translate to bias at the aggregate level. The authors argue that only an individual approach to hypothetical bias is consistent with the concept of incentive compatibility. The results of these experiments reflect these previous conflicting findings but go on to show that individual hypothetical bias is a robust result driven by the differing influence of pure self-interest and other-regarding preferences in real and hypothetical situations, rather than by a single behavioral theory such as free riding. In a hypothetical situation these preferences cause yea-saying and non-demand revealing voting. This suggests that investigation of individual respondents in other hypothetical one-shot binary choices may also provide us with insights into aggregate behavior in these situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Selection bias in HIV prevalence estimates occurs if non-participation in testing is correlated with HIV status. Longitudinal data suggests that individuals who know or suspect they are HIV positive are less likely to participate in testing in HIV surveys, in which case methods to correct for missing data which are based on imputation and observed characteristics will produce biased results. Methods: The identity of the HIV survey interviewer is typically associated with HIV testing participation, but is unlikely to be correlated with HIV status. Interviewer identity can thus be used as a selection variable allowing estimation of Heckman-type selection models. These models produce asymptotically unbiased HIV prevalence estimates, even when non-participation is correlated with unobserved characteristics, such as knowledge of HIV status. We introduce a new random effects method to these selection models which overcomes non-convergence caused by collinearity, small sample bias, and incorrect inference in existing approaches. Our method is easy to implement in standard statistical software, and allows the construction of bootstrapped standard errors which adjust for the fact that the relationship between testing and HIV status is uncertain and needs to be estimated. Results: Using nationally representative data from the Demographic and Health Surveys, we illustrate our approach with new point estimates and confidence intervals (CI) for HIV prevalence among men in Ghana (2003) and Zambia (2007). In Ghana, we find little evidence of selection bias as our selection model gives an HIV prevalence estimate of 1.4% (95% CI 1.2% – 1.6%), compared to 1.6% among those with a valid HIV test. In Zambia, our selection model gives an HIV prevalence estimate of 16.3% (95% CI 11.0% - 18.4%), compared to 12.1% among those with a valid HIV test. Therefore, those who decline to test in Zambia are found to be more likely to be HIV positive. Conclusions: Our approach corrects for selection bias in HIV prevalence estimates, is possible to implement even when HIV prevalence or non-participation is very high or very low, and provides a practical solution to account for both sampling and parameter uncertainty in the estimation of confidence intervals. The wide confidence intervals estimated in an example with high HIV prevalence indicate that it is difficult to correct statistically for the bias that may occur when a large proportion of people refuse to test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Heckman-type selection models have been used to control HIV prevalence estimates for selection bias when participation in HIV testing and HIV status are associated after controlling for observed variables. These models typically rely on the strong assumption that the error terms in the participation and the outcome equations that comprise the model are distributed as bivariate normal.
Methods: We introduce a novel approach for relaxing the bivariate normality assumption in selection models using copula functions. We apply this method to estimating HIV prevalence and new confidence intervals (CI) in the 2007 Zambia Demographic and Health Survey (DHS) by using interviewer identity as the selection variable that predicts participation (consent to test) but not the outcome (HIV status).
Results: We show in a simulation study that selection models can generate biased results when the bivariate normality assumption is violated. In the 2007 Zambia DHS, HIV prevalence estimates are similar irrespective of the structure of the association assumed between participation and outcome. For men, we estimate a population HIV prevalence of 21% (95% CI = 16%–25%) compared with 12% (11%–13%) among those who consented to be tested; for women, the corresponding figures are 19% (13%–24%) and 16% (15%–17%).
Conclusions: Copula approaches to Heckman-type selection models are a useful addition to the methodological toolkit of HIV epidemiology and of epidemiology in general. We develop the use of this approach to systematically evaluate the robustness of HIV prevalence estimates based on selection models, both empirically and in a simulation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The KongTM ball test has been used extensively to assess lateral bias in the domestic dog. Implicit in this challenge is the assumption that dogs use their dominant paw to stabilise the ball. This study examined whether or not this is the case. A comparative approach was adopted, exploring limb use in dogs and humans. In Experiment 1, the paw preference of 48 dogs was assessed on the KongTM ball test. Analysis revealed an equal distribution of paw use, although significantly more dogs were paw-preferent than ambilateral. Significantly more male dogs were classified as right-pawed, while more females were ambilateral. There was no significant effect of canine sex or castration status on the dogs’ paw preferences. In Experiment 2, 94 adult humans were assessed on their ability to remove a piece of paper from a KongTM ball with their mouth, using their left, right or both hands to stabilise the ball. 76% of the right-handed people used their left hand, and 82% of the left-handed participants used their right hand, to hold the KongTM steady. It is concluded that dogs, like humans, are most likely using their non-dominant limb to stabilise the KongTM ball and their dominant side for postural support. This has potential applied implications from an animal welfare perspective.