99 resultados para anti-tumor protein

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FK506-binding protein-like (FKBPL) has established roles as an anti-tumor protein, with a therapeutic peptide based on this protein, ALM201, shortly entering phase I/II clinical trials. Here, we evaluated FKBPL's prognostic ability in primary breast cancer tissue, represented on tissue microarrays (TMA) from 3277 women recruited into five independent retrospective studies, using immunohistochemistry (IHC). In a meta-analysis, FKBPL levels were a significant predictor of BCSS; low FKBPL levels indicated poorer breast cancer specific survival (BCSS) (hazard ratio (HR) = 1.30, 95% confidence interval (CI) 1.14-1.49, p < 0.001). The prognostic impact of FKBPL remained significant after adjusting for other known prognostic factors (HR = 1.25, 95% CI 1.07-1.45, p = 0.004). For the sub-groups of 2365 estrogen receptor (ER) positive patients and 1649 tamoxifen treated patients, FKBPL was significantly associated with BCSS (HR = 1.34, 95% CI 1.13-1.58, p < 0.001, and HR = 1.25, 95% CI 1.04-1.49, p = 0.02, respectively). A univariate analysis revealed that FKBPL was also a significant predictor of relapse free interval (RFI) within the ER positive patient group, but it was only borderline significant within the smaller tamoxifen treated patient group (HR = 1.32 95% CI 1.05-1.65, p = 0.02 and HR = 1.23 95% CI 0.99-1.54, p = 0.06, respectively). The data suggests a role for FKBPL as a prognostic factor for BCSS, with the potential to be routinely evaluated within the clinic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AIMS: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment. METHODS: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals. RESULTS: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group. CONCLUSIONS: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity and and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Among the pathogenic mechanisms of asthma, a role for oxidative/nitrosative stress has been well documented. Recent evidence suggests that histamine H₄ receptors play a modulatory role in allergic inflammation. Here we report the effects of compound JNJ 7777120 (JNJ), a selective H4 receptor antagonist, on antigen-induced airway inflammation, paying special attention to its effects on lipocortin-1 (LC-1/annexin-A1), a 37 kDA anti-inflammatory protein that plays a key role in the production of inflammatory mediators.

EXPERIMENTAL APPROACH: Ovalbumin (OA)-sensitized guinea pigs placed in a respiratory chamber were challenged with antigen. JNJ (5, 7.5 and 10 mg.kg⁻¹) was given i.p. for 4 days before antigen challenge. Respiratory parameters were recorded. Bronchoalveolar lavage (BAL) fluid was collected and lung specimens taken for further analyses 1 h after antigen challenge. In BAL fluid, levels of LC-1, PGD2 , LTB4 and TNF-α were measured. In lung tissue samples, myeloperoxidase, caspase-3 and Mn-superoxide dismutase activities and 8-hydroxy-2-deoxyguanosine levels were measured.

KEY RESULTS: OA challenge decreased LC-1 levels in BAL fluid, induced cough, dyspnoea and bronchoconstriction and increased PGD2 , LTB4 and TNF-α levels in lung tissue. Treatment with JNJ dose-dependently increased levels of LC-1, reduced respiratory abnormalities and lowered levels of PGD2 , LTB4 and TNF-α in BAL fluid.

CONCLUSIONS AND IMPLICATIONS: Antigen-induced asthma-like reactions in guinea pigs decreased levels of LC-1 and increased TNF-α and eicosanoid production. JNJ pretreatment reduced allergic asthmatic responses and airway inflammation, an effect associated with LC-1 up-regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: There is now no doubt that bystander signalling from irradiated cells occurs and causes a variety of responses in cells not targeted by the ionizing track. However, the mechanisms underlying these processes are unknown and the relevance to radiotherapy and risk assessment remains controversial. Previous research by our laboratory has shown bystander effects in a human keratinocyte cell line, HPV-G cells, exposed to medium from gamma irradiated HPV-G cells. The aim of this work was to investigate if similar mechanisms to those identified in medium transfer experiments occurred in these HPV-G cells when they are in the vicinity of microbeam irradiated cells. Demonstration of a commonality of mechanisms would support the idea that the process is not artifactual. MATERIALS AND METHODS: HPV-G cells were plated as two separate populations on mylar dishes. One population was directly irradiated using a charged particle microbeam (1 - 10 protons). The other population was not irradiated. Bystander factor-induced apoptosis was investigated in both populations following treatment by monitoring the levels of reactive oxygen species and mitochondrial membrane potential using fluorescent probes. Expression of the anti-apoptotic protein, bcl-2, and cytochrome c were determined, as well as apoptosis levels. RESULTS: Microbeam irradiation induced increases in reactive oxygen species and decreases in mitochondrial membrane potential at 6 h post-exposure, increased expression of bcl-2 and cytochrome c release at 6.5 h and increased apoptosis at 24 h. CONCLUSION: This study shows that similar bystander signalling pathways leading to apoptosis are induced following microbeam irradiation and following medium transfer. This demonstrates that the mechanisms involved are common across different radiation qualities and conditions and indicates that they may be relevant in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of underlying mechanisms of drug resistance, and the development of novel agents to target these pathways, is a priority for patients with advanced colorectal cancer (CRC). We previously undertook a systems biology approach to design a functional genomic screen and identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of drug resistance. The aim of this study was to examine the role of FGFR4 in drug resistance using RNAi and the small-molecule inhibitor BGJ398 (Novartis). We found that FGFR4 is highly expressed at the RNA and protein levels in colon cancer tumour tissue compared with normal colonic mucosa and other tumours. Silencing of FGFR4 reduced cell viability in a panel of colon cancer cell lines and increased caspase-dependent apoptosis. A synergistic interaction was also observed between FGFR4 silencing and 5-fluorouracil (5-FU) and oxaliplatin chemotherapy in colon cancer cell lines. Mechanistically, FGFR4 silencing decreased activity of the pro-survival STAT3 transcription factor and expression of the anti-apoptotic protein c-FLIP. Furthermore, silencing of STAT3 resulted in downregulation of c-FLIP protein expression, suggesting that FGFR4 may regulate c-FLIP expression via STAT3. A similar phenotype and downstream pathway changes were observed following FGFR4 silencing in cell lines resistant to 5-FU, oxaliplatin and SN38 and upon exposure of parental cells to the FGFR small-molecule inhibitor BGJ398. Our results indicate that FGFR4 is a targetable regulator of chemo-resistance in CRC, and hence inhibiting FGFR4 in combination with 5-FU and oxaliplatin is a potential therapeutic strategy for this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perifosine is an orally active alkylphospholipid analog, which has shown anti-tumor activity in a variety of cancers by inhibition of AKT phosphorylation. The objective of the current study was to evaluate its efficacy in in vitro models of human endometrial cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:


We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

Graphical abstract

We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS: The aim of this article was to evaluate afatinib (BIBW 2992), an ErbB family blocker, and nintedanib (BIBF 1120), a triple angiokinase inhibitor, in castration-resistant prostate cancer patients.

PATIENTS & METHODS: Patients were randomized to receive nintedanib (250 mg twice daily), afatinib (40 mg once daily [q.d.]), or alternating sequential 7-day nintedanib (250 mg twice daily) and afatinib (70 mg q.d. [Combi70]), which was reduced to 40 mg q.d. (Combi40) due to adverse events. The primary end point was progression-free rate at 12 weeks.

RESULTS: Of the 85 patients treated 46, 20, 16 and three received nintedanib, afatinib, Combi40 and Combi70, respectively. At 12 weeks, the progression-free rate was 26% (seven out of 27 patients) for nintedanib, and 0% for afatinib and Combi40 groups. Two patients had a ≥50% decline in PSA (nintedanib and the Combi40 groups). The most common drug-related adverse events were diarrhea, nausea, vomiting and lethargy.

CONCLUSION: Nintedanib and/or afatinib demonstrated limited anti-tumor activity in unselected advanced castration-resistant prostate cancer patients.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The precise regulatory mechanisms of amplification and downregulation of the pro- and anti-inflammatory cytokines in the inflammatory response have not been fully delineated. Although activated protein C (APC) and its precursor protein C (PC) have recently been reported to be promising therapeutic agents in the management of meningococcal sepsis, direct evidence for the anti-inflammatory effect remains scarce. We report that APC inhibits in vitro the release of tumor necrosis factor (TNF) and macrophage migration inhibitory factor (MIF), two known cytokine mediators of bacterial septic shock, from lipopolysaccharide (LPS)-stimulated human monocytes. The THP-1 monocytic cell line, when stimulated with LPS and concomitant APC, exhibited a marked reduction in the release of TNF and MIF protein in a concentration-dependent manner compared to cells stimulated with LPS alone. This effect was observed only when incubations were performed in serum-free media, but not in the presence of 1-10% serum. Serum-mediated inhibition could only be overcome by increasing APC concentrations to far beyond physiological levels, suggesting the presence of endogenous serum-derived APC inhibitors. Inhibition of MIF release by APC was found to be independent of TNF, as stimulation of MIF release by LPS was unaltered in the presence of anti-TNF antibodies. Our data confirm that the suggested anti-inflammatory properties of APC are due to direct inhibition of the release of the pro-inflammatory monokine TNF, and imply that the anti-inflammatory action of APC is also mediated via inhibition of MIF release.