3 resultados para annealing time

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The phase structure evolution of high impact polypropylene copolymer (IPC) during molten-state annealing and its influence on crystallization behaviour were studied. An entirely different architecture of the IPC melt was observed after being annealed, and this architecture resulted in variations of the crystallization behaviour. In addition, it was found that the core-shell structure of the dispersed phase was completely destroyed and the sizes of the dispersed domains increased sharply after being annealed at 200 degrees C for 200 min. Through examination of the coarseness of the phase morphology using phase contrast microscopy (PCM), it was found that a co-continuous structure and an abnormal 'sea-island' structure generally appeared with an increase in annealing time. The original matrix PP component appeared as a dispersed phase, whereas the copolymer components formed a continuous 'sea-island' structure. This change is ascribed to the large tension induced by solidification at the phase interface and the great content difference between the components. When the temperature was reduced the structure reverted to its original form. With increasing annealing time, the spherulite profiles became more defined and the spherulite birefringence changed from vague to clear. Overall crystallization rates and nucleation densities decreased, but the spherulite radial growth rates remained almost constant, indicating that molten-state annealing mainly affects the nucleation ability of IPC, due to a coarsened microstructure and decreased interface area. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the basic behavior and performance of simulated quantum annealing (QA) in comparison with classical annealing (CA). Three simple one-dimensional case study systems are considered: namely, a parabolic well, a double well, and a curved washboard. The time-dependent Schrodinger evolution in either real or imaginary time describing QA is contrasted with the Fokker-Planck evolution of CA. The asymptotic decrease of excess energy with annealing time is studied in each case, and the reasons for differences are examined and discussed. The Huse-Fisher classical power law of double-well CA is replaced with a different power law in QA. The multiwell washboard problem studied in CA by Shinomoto and Kabashima and leading classically to a logarithmic annealing even in the absence of disorder turns to a power-law behavior when annealed with QA. The crucial role of disorder and localization is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.