114 resultados para anharmonic oscillator
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macro- scopic quantum coherence. Considering various exactly-solvable quantum-oscillator systems, we address the role played by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that a monotonic relation exists between the the entropic nonlinearity of the considered potentials and their ground state nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of squeezing--which is not captured by the negativity of the Wigner function--we focus on the Glauber-Sudarshan P-function and address the nonclassicality/nonlinearity relation using the entanglement potential. Finally, we consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.
Resumo:
Energy levels and oscillator strengths (transition probabilities) have been calculated for transitions among 46 fine-structure levels of the (1s(2)) 2s(2) 2p(2), 2s2p(3),2p(4), 2s(2)2p3s, 2s(2) 2p3p and 2s(2)2p3d configurations of C-like K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX using the GRASP code. Configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels agree within 3% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.
Resumo:
Energy levels and oscillator strengths (transition probabilities) have been calculated for the fine-structure transitions among the levels of the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of C-like F IV, Na VI, Al VIII, P X, Cl XII, and Ar XIII using the CIV3 program. The extensive configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels generally agree within 5% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.
Resumo:
This paper gives the first experimental characterisation of the phase noise response of the recently introduced Inverse Class E topology when operated as an amplifier and then as an oscillator. The results indicate that in amplifier and oscillator modes of operation conversion efficiencies of 64%, and 42% respectively are available, and that the excess PM noise added as a consequence of saturated Class E operation results in about a 10 dB increase in PM over that expected from a small-signal Class A amplifier operating at much lower efficiency. Inverse Class E phase transfer dependence on device drain bias and flicker noise are presented in order to show, respectively, that the Inverse Class E amplifier and oscillator follow the trends predicted by conventional phase noise theory. © 2007 EuMA.