79 resultados para alpha(2) adrenergic and imidazoline receptors

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents.

OBJECTIVES: To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs.

DATA SOURCES: We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014.

METHODS: Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the data extracted. Random-effects meta-analyses were used for data synthesis.

RESULTS: Eighteen RCTs (2489 adult patients) were included. One trial at unclear risk of bias compared dexmedetomidine with clonidine and found that target sedation was achieved in a higher number of patients treated with dexmedetomidine with lesser need for additional sedation. The remaining 17 trials compared dexmedetomidine with propofol or benzodiazepines (midazolam or lorazepam). Trials varied considerably with regard to clinical population, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded outcome assessors. Compared with propofol or benzodiazepines (midazolam or lorazepam), dexmedetomidine had no significant effects on mortality [risk ratio (RR) 1.03, 95% confidence interval (CI) 0.85 to 1.24, I (2) = 0%; p = 0.78]. Length of ICU stay (mean difference -1.26 days, 95% CI -1.96 to -0.55 days, I (2) = 31%; p = 0.0004) and time to extubation (mean difference -1.85 days, 95% CI -2.61 to -1.09 days, I (2) = 0%; p < 0.00001) were significantly shorter among patients who received dexmedetomidine. No difference in time to target sedation range was observed between sedative interventions (I (2) = 0%; p = 0.14). Dexmedetomidine was associated with a higher risk of bradycardia (RR 1.88, 95% CI 1.28 to 2.77, I (2) = 46%; p = 0.001).

LIMITATIONS: Trials varied considerably with regard to participants, type of comparators, dose of sedative agents, outcome measures and length of follow-up. Overall, risk of bias was generally high or unclear. In particular, few trials blinded assessors.

CONCLUSIONS: Evidence on the use of clonidine in ICUs is very limited. Dexmedetomidine may be effective in reducing ICU length of stay and time to extubation in critically ill ICU patients. Risk of bradycardia but not of overall mortality is higher among patients treated with dexmedetomidine. Well-designed RCTs are needed to assess the use of clonidine in ICUs and identify subgroups of patients that are more likely to benefit from the use of dexmedetomidine.

STUDY REGISTRATION: This study is registered as PROSPERO CRD42014014101.

FUNDING: The National Institute for Health Research Health Technology Assessment programme. The Health Services Research Unit is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen and collagen-related peptide (CRP) activate platelets by interacting with glycoprotein (GP)VI. In addition, collagen binds to integrin alpha(2)beta(1) and possibly to other receptors. In this study, we have compared the role of integrins alpha(2)beta(1) and alpha(IIb)beta(3) in platelet activation induced by collagen and CRP. Inhibitors of ADP and thromboxane A(2) (TxA(2)) substantially attenuated collagen-induced platelet aggregation and dense granule release, whereas CRP-induced responses were only partially inhibited. Under these conditions, a proportion of platelets adhered to the collagen fibres resulting in dense granule release and alpha(IIb)beta(3) activation. This adhesion was substantially mediated by alpha(2)beta(1). The alpha(IIb)beta(3) antagonist lotrafiban potentiated CRP-induced dense granule release, suggesting that alpha(IIb)beta(3) outside-in signalling may attenuate GPVI signals. By contrast, lotrafiban inhibited collagen-induced dense granule release. These results emphasise the differential roles of alpha(2)beta(1) and alpha(IIb)beta(3) in platelet activation induced by collagen and CRP. Further, they show that although ADP and TxA(2) greatly facilitate collagen-induced platelet activation, collagen can induce full activation of those platelets to which it binds in the absence of these mediators, via a mechanism that is dependent on adhesion to alpha(2)beta(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Various platelet membrane glycoproteins have been proposed as receptors for collagen, in some cases as receptors For specific collagen types. In this study we have compared the ability of a range of collagen types to activate platelets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A recombinant form of the alpha 2(IV)NC1 domain of type IV collagen has been shown to have potent anti-angiogenic activity although this peptide has not been studied in the context of proliferative retinopathies. In the current investigation we examined the potential for alpha 2(IV) NC1 to regulate retinal microvascular endothelial cell function using a range of in vitro and in vivo assay systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the roles of adenosine diphosphate (ADP), thromboxanes and the integrin alpha(2)beta(1) in the activation of washed platelets by collagen in the presence of the alpha(IIb)beta3 antagonist lotrafiban. The stimulation of protein tyrosine phosphorylation by a collagen suspension is markedly delayed in the presence of the above inhibitors but shows substantial recovery with time. In comparison, activation of phospholipase C (PLC), Ca2+ elevation and dense granule secretion are more severely suppressed by the above inhibitors. blockade has a slightly greater inhibitory effect on all of the above responses than a combination of ADP receptor antagonists and cyclooxygenase inhibitor. Platelets exposed to a collagen monolayer show robust elevation of Ca2+ that is delayed in the presence of the above inhibitors and which is accompanied by of-granule secretion. These results demonstrate that secondary mediators and alpha(2)beta(1) modulate collagen-induced intracellular signaling but have negligible effect on GPVI signaling induced by the specific agonist convulxin. This work supports the postulate that the major role of of alpha(2)beta(1) is to increase the avidity of collagen for the platelet surface and by doing so enhance activation of GPVI. Therefore we propose an important role of secondary mediators in collagen-induced signaling is the indirect regulation of GPVI signaling via activation of alpha(2)beta(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.