12 resultados para agro-industrial waste

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One effective approach is to destroy industrial waste and pollution is the use of a semiconductor photocatalysis system. To date such, photocatalysis systems have employed conventional linear light sources. Initial results from a study of a photocatalysis system incorporating a tripled Nd:YAG laser are reported. The laser light not only played a roll as a light source for activating the photocatalyst(TiO2), but also destroyed the organic species directly via a photochemical process. The reaction intermediates and changes in their concentrations are monitored using HPLC. The relationship between the power of laser and kinetics of photoreaction are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work involved the treatment of industrial waste water from a nylon carpet printing plant. As dyeing of nylon is particularly difficult, acid dyes, fixing agents, thickeners, finishing agents, are required for successful colouration and cause major problems with the plant's effluent disposal in terms of chemical oxygen demand (COD). Granular activated carbon (GAC) Filtrasorb 400 was used to treat a simulated process plant effluent containing all the pollutants. Equilibrium isotherm experiments were established and experimental data obtained showed good empirical correlation with Langmuir isotherm theory. Column experimental data, in terms of COD were correlated using the bed depth service time (BDST) model. Solid phase loading in the columns were found to approach that in equilibrium studies indicating an efficient use of adsorbent. The results from the BDST model were then used to design a pilot adsorption rig at the plant. The performance of the pilot plant column were accurately predicted by scale-up from the bench scale columns. (C) 2001 Elsevier Science BN. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new peat-based sorbent was evaluated for the capture of heavy metals from waste streams. The media is a pelletted blend of organic humic material targeted for the capture of soluble metals from industrial waste streams and stormwater. The metals chosen for the media evaluation were Cd, Cu, Ni, and Zn due to their occurrence and abundance in waste streams and runoff. Sorption tests included an evaluation of the rate and extent of metals capture by the media, single versus multicomponent metals uptake, pH, anion influence, leaching effects and the effect of media moisture content on uptake rate and capacity. Isotherms of the sorption results showed that the presence of multiple metals increased the total sorption capacity of the media compared to the single component metal capacity; a result of site selectivity within the media. However the capacity for an individual metal in a multicomponent metal matrix was reduced compared to its single component capacity, due to competition for sites. Evidence of ion exchange behavior was observed but did not account for all metals capture. The media also provided a buffering action to counter the pH drop typically associated with metals capture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bioenergy is a key component of the European Union long term energy strategy across all sectors, with a target contribution of up to 14% of the energy mix by 2020. It is estimated that there is the potential for 1TWh of primary energy from biogas per million persons in Europe, derived from agricultural by-products and waste. With an agricultural sector that accounts for 75% of land area and a large number of advanced engineering firms, Northern Ireland is a region with considerable potential for an integrated biogas industry. Northern Ireland is also heavily reliant on imported fossil fuels. Despite this, the industry is underdeveloped and there is a need for a collaborative approach from research, business and policy-makers across all sectors to optimise Northern Ireland’s abundant natural resources. ‘Developing Opportunities in Bio-Energy’ (i.e. Do Bioenergy) is a recently completed project that involved both academic and specialist industrial partners. The aim was to develop a biogas research action plan for 2020 to define priorities for intersectoral regional development, co-operation and knowledge transfer in the field of production and use of biogas. Consultations were held with regional stakeholders and working groups were established to compile supporting data, decide key objectives and implementation activities. Within the context of this study it was found that biogas from feedstocks including grass, agricultural slurry, household and industrial waste have the potential to contribute from 2.5% to 11% of Northern Ireland’s total energy consumption. The economics of on-farm production were assessed, along with potential markets and alternative uses for biogas in sectors such as transport, heat and electricity. Arising from this baseline data, a Do Bioenergy was developed. The plan sets out a strategic research agenda, and details priorities and targets for 2020. The challenge for Northern Ireland is how best to utilise the biogas – as electricity, heat or vehicle fuel and in what proportions. The research areas identified were: development of small scale solutions for biogas production and use; solutions for improved nutrient management; knowledge supporting and developing the integration of biogas into the rural economy; and future crops and bio-based products. The human resources and costs for the implementation were estimated as 80 person-years and £25 million respectively. It is also clear that the development of a robust bio-gas sector requires some reform of the regulatory regime, including a planning policy framework and a need to address social acceptance issues. The Action Plan was developed from a regional perspective but the results may be applicable to other regions in Europe and elsewhere. This paper presents the methodology, results and analysis, and discussion and key findings of the Do Bioenergy report for Northern Ireland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seeds are traditionally considered as common or even public goods, their traits as ‘products of nature’. They are also essential to biodiversity, food security and food sovereignty. However, a suite of techno-legal interventions has legislated the enclosure of seeds: seed patents, plant variety protections, and stewardship agreements. These instruments create and protect private proprietary interests over plant material and point to the interface between seeds, capitalism, and law. In the following article, we consider the latest innovations, the bulk of which have been directed toward genetically disabling the reproductive capacities of seeds (terminator technology) or tying these capacities to outputs (‘round-up necessary’). In both instances, scarcity moves from artificial to real.
For the agro-industrial complex, the innovations are perfectly rational as they can simultaneously control supply and demand. For those outside the complex, however, the consequences are potentially ruinous. The practices of seed-saving and exchange no longer are feasible, even covertly. Contemporary genetic controls have upped the ante, by either disabling the reproductive capacity of seeds or, through cross-pollination and outcrossing, facilitating the autonomous spread of the genetic modifications that are importantly still traceable, identifiable and therefore capable of legal protection. In both instances, genuine scarcity becomes the new standard as private interests dominate what was a public sphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland cement. These binders consist of a class of inorganic polymer formed mainly by the reaction between an alkaline solution and an aluminosilicate source. Precursor materials for this reaction can be found in secondary material streams from different industrial sectors, from energy to agro-alimentary. However, the suitability of these materials in developing the polymerisation reaction must be assessed through a detailed chemical and physical characterisation, ensuring the availability of required chemical species in the appropriate quantity and physical state. Furthermore, the binder composition needs to be defined in terms of proper alkali activation dosages, water content in the mix, and curing conditions. The mix design must satisfy mechanical requirements and compliance to desired engineering properties (workability, setting time) for ensuring the suitability of the binder in replacing Portland cement in concrete applications. This paper offers a structured approach for the development of secondary material-based binders, from their identification to mix design and production procedure development. Essential features of precursor material can be determined through chemical and physical characterisation methods and advanced microscope techniques. Important mixing parameters and binder properties requirements are examined and some examples of developed binders are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the organic fraction of municipal solid waste crops has received considerable attention as a sustainable feedstock that can replace fossil fuels for the production of renewable energy. Therefore, municipal bin-waste in the form of hay was investigated as a potential energy crop for fermentable sugars production. Hydrolysis of hay by dilute phosphoric acid was carried out in autoclave parr reactor, where reactor temperature (135-200 degrees c) and acid concentration (2.5-10% (w/w)) were examined. Analysis of the decomposition rate of hemicellulosic biomass was undertaken using HPLC of the reaction products. Xylose production reached a maximum value of 13.5 g/100 g dry mass corresponding to a yield of 67% at the best identified conditions of 2.5 wt% H3PO4, 175 degrees C, 10 min reaction time, and at 5 wt% H3PO4, 150 degrees C, and 5 min reaction time. For glucose, an average yield of 25% was obtained at 5 wt% H3PO4, 175 degrees C and 30 min. Glucose degradation to HMF was achieved at 10 wt% H3PO4 and 200 degrees C. The maximum yield for produced arabinose was an average of 3 g/100 g dry. mass corresponding to 100% of the total possible arabinose. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the Two-fraction models. It was found for both models that the kinetic constants (k) depend on the acid concentration and temperature. For xylose and arabinose it was found that the rate of formation was more favoured than the rate of degradation. By contrast, for glucose it was found that glucose degradation was occurring faster than glucose formation. It can be concluded that dilute phosphoric acid hydrolysis of hay crop is feasible for the production of fermentable sugars which are essential for bioethanol synthesis. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to meet the recycling and recovery targets set forth by the European Union's (EU) Waste and Landfill Directives, both the Irish and Czech governments’ policy on waste management is changing to meet these pressures, with major emphasis being placed upon the management of biodegradable municipal waste (BMW). In particular, the EU Landfill Directive requires reductions in the rate of BMW going to landfill to 35% of 1995 values by 2016 and 2020 for Ireland and the Czech Republic, respectively. In this paper, the strategies of how Ireland and the Czech Republic plan to meet this challenge are compared. Ireland either landfills or exports its waste for recovery, while the Czech Republic has a relatively new waste management infrastructure. While Ireland met the first target of 75% diversion of BMW from landfill by 2010 and preliminary 2012 data indicate that Ireland is on track to meet the 2013 target, the achievement of the 2016 target remains at risk. Indicators that were developed to monitor the Czech Republic's path to meeting the targets demonstrate that it did not meet the first target that was set for 2010 and will probably not meet its 2013 target either. The evaluation reports on the implementation of Waste Management Plan of Czech Republic suggest that the currently applied strategy to divert biodegradable waste from landfill is not effective enough. For both countries, the EU Waste Framework and Landfill Directives will be a significant influence and driver of change in waste management practices and governance over the coming decade. This means that both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. Improving environmental education is part of increased awareness as it is imperative for citizens to understand the consequences of their actions as affluence continues to grow producing increased levels of waste.

Graphical abstract
Despite the differences in the levels of waste generation in both the Czech Republic and Ireland, each country can learn from each other in order to meet the recycling and recovery targets set by the European Union's (EU) Waste and Landfill Directives. Both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. In addition, there needs to be minimum safe standards when land-spreading organic agricultural and organic municipal and industrial materials on agricultural land used for food production, as well as incentives to increase BMW diversion from landfill such as the increased landfill levy implemented in Ireland and the acceptance of MBT and/or incineration as a means of treating residual waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper revisits work on the socio-political amplification of risk, which predicts that those living in developing countries are exposed to greater risk than residents of developed nations. This prediction contrasts with the neoliberal expectation that market driven improvements in working conditions within industrialising/developing nations will lead to global convergence of hazard exposure levels. It also contradicts the assumption of risk society theorists that there will be an ubiquitous increase in risk exposure across the globe, which will primarily affect technically more advanced countries. Reviewing qualitative evidence on the impact of structural adjustment reforms in industrialising countries, the export of waste and hazardous waste recycling to these countries and new patterns of domestic industrialisation, the paper suggests that workers in industrialising countries continue to face far greater levels of hazard exposure than those of developed countries. This view is confirmed when a data set including 105 major multi-fatality industrial disasters from 1971 to 2000 is examined. The paper concludes that there is empirical support for the predictions of socio-political amplification of risk theory, which finds clear expression in the data in a consistent pattern of significantly greater fatality rates per industrial incident in industrialising/developing countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.