3 resultados para advanced electronic ceramics
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.
In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.
The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.
Resumo:
A new type of advanced encryption standard (AES) implementation using a normal basis is presented. The method is based on a lookup technique that makes use of inversion and shift registers, which leads to a smaller size of lookup for the S-box than its corresponding implementations. The reduction in the lookup size is based on grouping sets of inverses into conjugate sets which in turn leads to a reduction in the number of lookup values. The above technique is implemented in a regular AES architecture using register files, which requires less interconnect and area and is suitable for security applications. The results of the implementation are competitive in throughput and area compared with the corresponding solutions in a polynomial basis.
Resumo:
Background: A preliminary review of the UK Renal Registry (UKRR) pre-RRT study data revealed results suggesting that, for some patients, the date of start of renal replacement therapy (RRT), as reported to the UKRR, was incorrect and often significantly later than the true date of start. A more detailed study then aimed to validate a set of criteria to identify patients with an incorrect start date. Methods: Pre-RRT laboratory data were electronically extracted from 8,810 incident RRT patients from 9 UK renal centres. Any patient with a low urea (<15 mmol/L) at the start of RRT or with a substantial improvement in kidney function (either a fall in urea >10 mmol/L or rise in eGFR >2 ml/min/1.73 m) within the two months prior to RRT were considered to potentially have an incorrect date of start. In 4
selected centres, the electronic patient records of all patients flagged were reviewed to validate these criteria.
Results: Of 8,810 patients, 1,616 (18.3%) were flagged by the identification criteria as having a potentially incorrect date of start of RRT, although a single centre accounted for 41% of the total flagged cohort. Of these flagged patients, 61.7% had been assigned an incorrect date of start of haemodialysis (HD), 5.7% had evidence of acute RRT being given before the reported date of start of HD
and 9.2% had evidence of starting peritoneal dialysis exchanges prior to the reported date of start. Of
those flagged, 10.7% had a correct date of start of RRT.
Conclusions: Accurate reporting of RRT episodes is vital for the analysis of time dependent studies such as survival or time to transplantation. A proportion of patients starting RRT were assigned an incorrect start date. In order to improve the accuracy of this reporting the UK Renal Registry
must work with renal centres and clinical staff on improving data input for the start of RRT.