8 resultados para Zinc-oxide

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A convenient microwave method in preparation of zinc oxide nanoparticles (ZnONPs) using an ionic liquid, trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide, [P-66614][NTf2], as a green solvent is described in this paper. To the best of our knowledge, there is no report for synthesizing any nanoparticle using this ionic liquid. Trihexyltetradecylphosphonium bis{(trifluoromethyl)sulfonyl}-imide has low interface tension and thus it can enhance the nucleation rate, which is favorable to the formation of smaller ZnONPs. The fabricated ZnONPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectroscopy. The XRD pattern reveals that the ZnONPs have hexagonal wurtzite structure. The strong intensity and narrow width of ZnO diffraction peaks indicate that the resulting nanoparticles are of high crystallinity. The synthesized ZnONPs show direct band gap of 3.43 eV. The UV-vis absorption spectrum of ZnONPs dispersed in ethylene glycol at room temperature revealed a blue-shifted onset of absorption. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, zinc oxide nanoparticles have been synthesized by the sonochemical method in an ionic liquid, 1-hexyl-3-methylimidazolium his (trifluoromethylsulfonyl) imide, liquid [hmim][NTf2] as a solvent. The morphology and structure of ZnO nanoparticles have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A possible mechanism is proposed to explain the formation of ZnO nanostructures. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide nanoparticles have been synthesized by microwave decomposition of zinc acetate precursor using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [bmim][NTf2] as a green solvent. The structure and morphology of ZnO nanoparticles have been characterized using X-ray diffraction and transmission electron microscopy. The ZnO nanofluids have been prepared by dispersing ZnO nanoparticles in glycerol as a base fluid in the presence of ammonium citrate as a dispersant. The antibacterial activity of suspensions of ZnO nanofluids against (E. coli) has been evaluated by estimating the reduction ratio of the bacteria treated with ZnO. Survival ratio of bacteria decreases with increasing the concentrations of ZnO nanofluids and time. The results show that an increase in the concentrations of ZnO nanofluids produces strong antibacterial activity toward E. coli. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of Zn/H-ZSM-5 zeolite were prepared by impregnation of the parent zeolite with Zn(NO3)(2). The state of zinc in the samples was analyzed by XPS measurements, (ald the degree of reduction for the zinc oxide on the ZSM-5 zeolite surface in hydrogen atmosphere was determined, as well as the influence of this reducing treatment upon the activity and selectivity for aromatics of zeolites in aromatization of cyclohexane. It resulted that the degree of reduction depends on the concentration of zinc in the zeolite and is influenced by the presence of alumina binder. The results of the activity and selectivity to aromatics were correlated with the reduction of zinc oxide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.