28 resultados para X-ray crystal structures
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The monoanionic ligand [C6H3(CH(2)NMe(2))(2)-2,6](-), a potentially terdentate N,C,N bonding system, has been employed to synthesize a series of new ruthenium(II) complexes [Ru{C6H3(CH(2)NMe(2))(2)-2,6}X(L)] (L = PPh(3) X = Cl (2a), I (2b); L = norbornadiene (nbd), X = Cl (4), eta(1)-OSO2CF3 (5)) and [Ru{C6H3(CH(2)NMe(2))(2)-2,6}(2,2':6',2 ''-terpyridine)]Cl (3). X-ray crystal structures of 2b and 3-5 have been determined, in which the N,C,N coordination geometry with respect to the metal center is found to differ considerably. In each complex the aryldiamine ligand is terdentate, eta(3)-N,C,N-bonded as a six electron donor system. However, depending on the other ligands in the Ru(II) coordination sphere, this ligand demonstrates considerable flexibility in adopting coordination geometries which range from meridional in 3 through pseudomeridional in 2b to pseudofacial in 4 and 5. In the structures of 4 and 5 significant distortions of the aryl ring, involving bending of the six-membered ring into a boatlike conformation, are found. The different combinations of the N,C,N ligand with sets of other ligands lead to a range of metal geometries, i.e. square pyramidal in 2b, octahedral in 3, and bicapped tetrahedral in 4 and 5.
Resumo:
The X-ray crystal structure of [Pd(eta(3)-allyl)(dppn)]BF4 . CH2Cl2 (1) where dppn = 1,8-bis(diphenylphosphino)naphthalene is reported. Comparison of the conformation of the ligand in 1 with that in the free state shows that there is a relief of strain on complexation analogous to the relief of strain observed upon protonation of proton sponge.
Resumo:
Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.
Resumo:
Successive treatment of 9-(phenylethynyl)fluoren-9-ol (1a), with HBr, butyllithium and chlorodiphenylphosphine furnishes 3,3-(biphenyl-2,2'-diyl)-1-diphenylphosphino-1-phenylallene (5). Moreover, reaction of 1a directly with chlorodiphenylphosphine yields the corresponding allenylphosphine oxide (6). The allenylphosphine (5), and Fe-2(CO)(9) initially form the phosphine-Fe(CO)(4) complex, 11, which is very thermally sensitive and readily loses a carbonyl ligand. In the resulting phosphine-Fe(CO)(3) system, 12, the additional site at iron is coordinated by the allene double bond adjacent to phosphorus; the Fe(CO) 3 tripod in 12 exhibits restricted rotation on the NMR time-scale even at room temperature. The corresponding chromium complex, (5)-Cr(CO)5 (9), has also been prepared. The gold complexes (5)AuCl (13), and [(5)-Au(THT)](+) X-, where (THT) is tetrahydrothiophene, and X = PF6 (14a), or ClO4 (14b), are analogous to the known triphenylphosphine-gold complexes. In contrast, in the (arene)(allenylphosphine) RuCl2 system the allene double bond adjacent to phosphorus displaces a chloride, and the resulting cationic species undergoes nucleophilic attack by water yielding ultimately a five-membered Ru-P-C=C-O ruthenacycle (17). Thus, the allenylphosphine (5), reacts initially as a conventional mono-phosphine but, when the metal centre has a readily displaceable ligand such as a carbonyl or halide, the allene double bond adjacent to the phosphorus can also function as a donor. X- ray crystal structures are reported for 5, 6, 11, 12, 13, 14a, 14b and 17.
Resumo:
The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.
Resumo:
Near-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)(3). In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups. Photophysical investigations of solution samples of the complexes demonstrate that all complexes exhibit relatively long luminescence lifetimes in nondeuteurated solvents. Luminescence studies of powder samples have also been recorded for examination of the properties of NIR complexes in the solid state for potential material applications. The results underline the effective shielding of the lanthanide by the twelve phenyl groups of the tpip ligands and the reduction of high-energy vibrations in close proximity to the lanthanide, both features important in the design of NIR emitting lanthanide complexes.
Resumo:
A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations of x-ray line transfer from laser-plasmas experiments.
Resumo:
The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s ->pi(*)(e(2u)) antibonding and 1s ->pi(*)(b(2g)) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs. (C) 2007 American Institute of Physics.
Resumo:
The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.
Resumo:
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degreesC), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H...O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degreesC), the ions are discretely packed with only weak C-H...O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis( trifluoromethanesulfonyl) imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl) imide anions impart in ionic liquids.
Resumo:
New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.
Resumo:
The inclusion of collisional rates for He-like Fe and Ca ions is discussed with reference to the analysis of solar flare Fe XXV and Ca XIX line emission, particularly from the Yohkoh Bragg Crystal Spectrometer (BCS). The new data are a slight improvement on calculations presently used in the BCS analysis software in that the discrepancy in the Fe XXV y and z line intensities (observed larger than predicted) is reduced. Values of electron temperature from satellite-to-resonance line ratios are slightly reduced (by up to 1 MK) for a given observed ratio. The new atomic data will be incorporated in the Yohkoh BCS databases. The data should also be of interest for the analysis of high-resolution, non-solar spectra expected from the Constellation-X and Astro-E space missions. A comparison is made of a tokamak S XV spectrum with a synthetic spectrum using atomic data in the existing software and the agreement is found to be good, so validating these data for particularly high-n satellite wavelengths close to the S XV resonance line. An error in a data file used for analyzing BCS Fe XXVI spectra is corrected, so permitting analysis of these spectra.
Resumo:
The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.
Resumo:
A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector (Deltat=8 ms). Helium-like Argon emissions from 3.94 to 4.00 Angstrom have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10(-5) Angstrom (1.8 kms(-1)) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST. (C) 2004 American Institute of Physics.
Resumo:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.