11 resultados para Weibull-jakauma
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
It is shown that, when expressing arguments in terms of their logarithms, the Laplace transform of a function is related to the antiderivative of this function by a simple convolution. This allows efficient numerical computations of moment generating functions of positive random variables and their inversion. The application of the method is straightforward, apart from the necessity to implement it using high-precision arithmetics. In numerical examples the approach is demonstrated to be particularly useful for distributions with heavy tails, Such as lognormal, Weibull, or Pareto distributions, which are otherwise difficult to handle. The computational efficiency compared to other methods is demonstrated for an M/G/1 queueing problem.
Resumo:
We develop a recursion-relation approach for calculating the failure probabilities of a fiber bundle with local load sharing. This recursion relation is exact, so it provides a way to test the validity of the various approximate methods. Applying the exact calculation to uniform and Weibull threshold distributions, we find that the most probable failure load coincides with the average strength as the size of the system N --> infinity.
Resumo:
Metallographic characterisation is combined with statistical analysis to study the microstructure of a BT16 titanium alloy after different heat treatment processes. It was found that the length, width and aspect ratio of α plates in this alloy follow the three-parameter Weibull distribution. Increasing annealing temperature or time causes the probability distribution of the length and the width of α plates to tend toward a normal distribution. The phase transformation temperature of the BT16 titanium alloy was found to be 875±5°C.
Resumo:
A nonparametric, small-sample-size test for the homogeneity of two psychometric functions against the left- and right-shift alternatives has been developed. The test is designed to determine whether it is safe to amalgamate psychometric functions obtained in different experimental sessions. The sum of the lower and upper p-values of the exact (conditional) Fisher test for several 2 × 2 contingency tables (one for each point of the psychometric function) is employed as the test statistic. The probability distribution of the statistic under the null (homogeneity) hypothesis is evaluated to obtain corresponding p-values. Power functions of the test have been computed by randomly generating samples from Weibull psychometric functions. The test is free of any assumptions about the shape of the psychometric function; it requires only that all observations are statistically independent. © 2011 Psychonomic Society, Inc.
Resumo:
A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.
Resumo:
This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems. © 2011 IEEE.
Resumo:
This study presents the findings of an empirical channel characterisation for an ultra-wideband off-body optic fibre-fed multiple-antenna array within an office and corridor environment. The results show that for received power experiments, the office and corridor were best modelled by lognormal and Rician distributions, respectively [for both line of sight (LOS) and non-LOS (NLOS) scenarios]. In the office, LOS measurements for t and tRMS were both described by the Normal distribution for all channels, whereas NLOS measurements for t and t were Nakagami and Weibull distributed, respectively. For the corridor measurements, LOS for t and t were either Nakagami or normally distributed for all channels, with NLOS measurements for t and t being Nakagami and normally distributed, respectively. This work also shows that achievable diversity gain was influenced by both mutual coupling and cross-correlation co-efficients. Although the best diversity gains were 1.8 dB for three-channel selective diversity combining, the authors present recommendations for improving these results. © The Institution of Engineering and Technology 2013.
Resumo:
Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.