37 resultados para Wayne
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A series of thin films comprising gold nanorods embedded in an alumina matrix have been fabricated with lengths ranging from 75 to 330 nm. Their optical properties, expressed in terms of extinction - In(T), where T is optical transmittance, have been measured as a function of wavelength, rod length, angle of incidence, and incident polarization state. The results are compared to a Maxwell-Garnett based theory modified to take into account the strongly anisotropic nature of the medium. Transverse and longitudinal plasmon resonances are observed. The interaction between the nanorods leads to the splitting of the longitudinal resonance with the longer-wavelength resonance being forbidden for direct optical observations. The shorter-wavelength resonance related to the symmetric coupling between longitudinal plasma excitations in the nanorods depends on rod length, polarization state, and angle of incidence of the probing light. The impact of electron confinement on the optical properties of the gold rods is also seen and may be incorporated into the Maxwell-Garnett theory by restricting the mean free path of the conduction electrons to produce excellent agreement between observations and the complete theory. Annealing experiments that modify the physical structure of the gold confirm this conclusion.
Resumo:
Arrays of nickel and gold nanorods have been grown on glass and silicon substrates using porous alumina templates of less than 500 nm thickness. A method is demonstrated for varying the diameter of the nanorods whilst keeping the spacing constant. Optical extinction spectra for the gold nanorods show two distinct maxima associated with the transverse and longitudinal axes of the rods. Adding small quantities of oxygen to the aluminium before anodization is found to improve the sharpness of the extinction peaks. The spectral position of the longitudinal peak is shown to be sensitive to the nanorod diameter for constant length and spacing. For the nickel nanorods it is shown that the magnetic properties are governed by both interactions between the wires and shape anisotropy.
Resumo:
Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.
Resumo:
The electro-optic response of a cell consisting of a thin layer of liquid crystal deposited onto gold nanorods embedded in thin film alumina with a transparent top electrode has been investigated. For p-polarized light incident from the liquid crystal side, the extinction peak associated with the nanorod longitudinal plasmon resonance is completely suppressed. The peak could be recovered by applying an external electric field parallel to the long axis of the nanorods. No extinction peak suppression is observed when the light was incident from the nanorod side of the cell. The effect is explained by polarization properties of liquid crystal.
Resumo:
The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.
Resumo: