29 resultados para Wave generation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper summarises die main results obtained during the two experimental campaigns on TCE X-ray lasers that we have carried out since the last Kyoto X-ray laser Conference in 1998. A two-color (2 omega /1 omega) pumping configuration was tested and led to the observation of a strong lasing line at 16 nm, identified to a 4f-4d transition in Ni-like Ag. A strong x 300-400 enhancement of the 13.9 nm Ni-like 4d-4p lasing emission was obtained when a traveling wave short pulse pumping was applied. Finally the temporal history of the 13.9 nm laser pulse was measured with a high-resolution Streak camera, A very short 2 ps X-ray laser pulse was directly demonstrated for the first time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate a superposition of travelling field coherent states using an extremely small Kerr effect and an ancilla which could be a single photon or two entangled twin photons. The scheme contains ingredients which are all within the current state of the art and is robust against the main sources of errors which can be identified in our setups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The basic concepts and phenomenology of wave mixing and harmonic generation are reviewed in context of the recent advances in the enhanced nonlinear activity in metamaterials and photonic crystals. The effects of dispersion, field confinement and phase synchronism are illustrated by the examples of the on-purpose designed artificial nonlinear structures. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:469482, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, construction and subsequent operation of the 75 kW oscillating water column wave power plant on the Isle of Islay has provided a significant insight into the practicality of wave power conversion. The development of wave power plant poses a significant design and construction challenge for not only civil but also mechanical and electrical engineers. The plant must withstand the immense forces imposed during storms, yet efficiently convert the slow cyclic motion of waves into a useful energy source such as electricity and do so at a price competitive with other forms of generation. In addition, the hostile marine environment hampers the construction process and the variability of the wave resource poses problems for electrical control and grid integration. Many sceptics consider wave power conversion to be too difficult, too expensive and too variable to justify the effort and expense necessary to develop this technology. However, the authors contend that with modular wave power systems developed from the practical experience gained with the Islay plant, wave power is a viable technology with a considerable world market potential. However, this technology is still at the early stages of development and will require the construction of a number of different prototypes before there is extensive commercial exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of high harmonic generation (HHG) by atoms and ions with active p-electrons is carried out in the theoretical framework of the rescattering mechanism. The substate with m(l) = 0, i.e. zero orbital momentum projection along the electric vector of a linearly polarized laser wave, is found to give the major contribution to the HHG rate. Our calculations for HHG by an H atom in an excited 2p-state demonstrate that the rate for recombination into a final state with a different value of m(l) (= +/- 1), is higher for lower harmonic orders N, while for higher N (beyond the plateau domain) the difference vanishes. For species with closed electron shells, the m(l)-changing transitions are forbidden by the Pauli exclusion principle. We report absolute HHG rates for halogen ions and noble gas atoms at various intensities. These results demonstrate that the Coulomb binding potential of the atoms considerably enhances both the ionization and recombination steps in the rescattering process. However, the weak binding energy of the anions allows lower orders of HHG to be efficiently produced at relatively low intensities, from which we conclude that observation of HHG by an anion is experimentally feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier studies have indicated that the gross nearshore wave energy resource is significantly smaller than the gross offshore wave energy resource implying that the deployment of wave energy converters in the nearshore is unlikely to be economic. However, it is argued that the gross wave energy resource is not an appropriate measure for determining the productivity of a wave farm and an alternative measure, the exploitable wave energy resource, is proposed. Calculation of a site's potential using the exploitable wave energy resource is considered superior because it accounts for the directional distribution of the incident waves and the wave energy plant rating that limits the power capture in highly energetic sea-states. A third-generation spectral wave model is used to model the wave transformation from deep water to a nearshore site in a water depth of 10 m. It is shown that energy losses result in a reduction of less than 10% of the net incident wave power. Annual wave data for the North Atlantic coast of Scotland is analysed and indicates that whilst the gross wave energy resource has reduced significantly by the 10 m depth contour, the exploitable wave energy resource is reduced by 7 and 22% for the two sites analysed. This limited reduction in exploitable wave energy resource means that for many exposed coasts, nearshore sites offer similar potential for exploitation of the wave energy resource as offshore sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenological mechanisms of passive intermodulation (PIM) in printed lines have been explored by mapping intermodulation products generated by the two-tone traveling waves in microstrip lines. Near-field probing based upon a commercial PIM analyzer has been employed for identification of the PIM sources in printed lines. The results of extensive near-field probing provide the direct experimental evidences of cumulative growth of the intermodulation products in the matched uniform microstrip lines and reveal the fundamental role of the nonlinear scattering by the lumped nonlinear inclusions in the intermodulation production. The distributed nature of the PIM generation in microstrip lines has been conclusively demonstrated and comprehensively described in terms of the four-wave mixing process that proved to be fully consistent with the results of experimental observations of third-order PIM products on the matched and mismatched microstrip lines. © 2006 IEEE.