48 resultados para W(110), two-dimensional binary alloys, local density of states, atomic stacking sequence, anisotropy, domain wall energy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of nonlinear dust-lattice waves in a two-dimensional hexagonal crystal is investigated. Transverse (off-plane) dust grain oscillatory motion is considered in the form of a backward propagating wave packet whose linear and nonlinear characteristics are investigated. An evolution equation is obtained for the slowly varying amplitude of the first (fundamental) harmonic by making use of a two-dimensional lattice multiple scales technique. An analysis based on the continuum approximation (spatially extended excitations compared to the lattice spacing) shows that wave packets will be modulationally stable and that dark-type envelope solitons (density holes) may occur in the long wavelength region. Evidence is provided of modulational instability and of the occurrence of bright-type envelopes (pulses) at shorter wavelengths. The role of second neighbor interactions is also investigated and is shown to be rather weak in determining the modulational stability region. The effect of dissipation, assumed negligible in the algebra throughout the article, is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe all two dimensional unital Riesz algebras and study representations of them in Riesz algebras of regular operators. Although our results are not complete, we do demonstrate that very varied behaviour can occur even though all these algebras can be given a Banach lattice algebra norm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previous tight-binding model of power dissipation in a nanoscale conductor under an applied bias is extended to take account of the local atomic topology and the local electronic structure. The method is used to calculate the power dissipated at every atom in model nanoconductor geometries: a nanoscale constriction, a one-dimensional atomic chain between two electrodes with a resonant double barrier, and an irregular nanowire with sharp corners. The local power is compared with the local current density and the local density of states. A simple relation is found between the local power and the current density in quasiballistic geometries. A large enhancement in the power at special atoms is found in cases of resonant and anti-resonant transmission. Such systems may be expected to be particularly unstable against current-induced modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory has been used to investigate the surface relaxation of Cu2O(100) and the adsorption of NO. The calculations indicate the formation of surface copper dimers on relaxation coupled with a large contraction of the spacing between the first and second layers. Local density of states for atoms in the top three layers shows that the third layer copper atoms have the greatest change in bonding character. Adsorption energies have been calculated for the N-down and O-down adsorption of NO on the Cu2O(100) surface. These indicate that N-down adsorption is favoured and that in this case NO-lattice oxygen interactions dominate the adsorbate structure. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory with gradient corrections and spin polarization has been used to study the dehydrogenation of CH3 on Ni(111), a crucial step in many important catalytic reactions. The reaction, CH3(ads)--> CH2(ads)+H-(ads), is about 0.5 eV endothermic with an activation energy of more than 1 eV. The overall reaction pathway is rather intriguing. The C moiety translates from a hcp to a fcc site during the course of the reaction. The transition state of the reaction has been identified. The CH3 species is highly distorted, and both C and the active H are centered nearly on top of a row of Ni atoms with a long C-H bond length of 1.80 Angstrom. The local density of states coupled with examination of the real space distribution of individual quantum states has been used to analyze the reaction pathway. (C) 2000 American Institute of Physics. [S0021-9606(00)30218-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser induced fluorescence images of a low temperature laser-produced plasma expanding into vacuum are presented and compared to a computer simulation. The complex nature of a plume expanding into background gas is highlighted, along with a potential means of simplifying the study of such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection of mammalian skeletal muscle with the intracellular parasite Trichinella spiralis results in profound alterations in the host cell and a realignment of host cell gene expression. The role of parasite excretory/secretory (E/S) products in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional electrophoresis to analyse the profile of muscle larva excreted/secreted proteins and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the interrogation of a custom-made Trichinella EST database and the NemaGene cluster database for T. spiralis. Our results suggest that this proteomic approach is a useful tool to study protein expression in Trichinella spp. and will contribute to the identification of excreted/secreted proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-dependent density-functional theory is a rather accurate and efficient way to compute electronic excitations for finite systems. However, in the macroscopic limit (systems of increasing size), for the usual adiabatic random-phase, local-density, or generalized-gradient approximations, one recovers the Kohn-Sham independent-particle picture, and thus the incorrect band gap. To clarify this trend, we investigate the macroscopic limit of the exchange-correlation kernel in such approximations by means of an algebraical analysis complemented with numerical studies of a one-dimensional tight-binding model. We link the failure to shift the Kohn-Sham spectrum of these approximate kernels to the fact that the corresponding operators in the transition space act only on a finite subspace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.