5 resultados para Viscous Dampers,Five Step Method,Equivalent Static Analysis Procedure,Yielding Frames,Passive Energy Dissipation Systems
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Typologies have represented an important tool for the development of comparative social policy research and continue to be widely used in spite of growing criticism of their ability to capture the complexity of welfare states and their internal heterogeneity. In particular, debates have focused on the presence of hybrid cases and the existence of distinct cross-national pattern of variation across areas of social policy. There is growing awareness around these issues, but empirical research often still relies on methodologies aimed at classifying countries in a limited number of unambiguous types. This article proposes a two-step approach based on fuzzy-set-ideal-type analysis for the systematic analysis of hybrids at the level of both policies (step 1) and policy configurations or combinations of policies (step 2). This approach is demonstrated by using the case of childcare policies in European economies. In the first step, parental leave policies are analysed using three methods – direct, indirect, and combinatory – to identify and describe specific hybrid forms at the level of policy analysis. In the second step, the analysis focus on the relationship between parental leave and childcare services in order to develop an overall typology of childcare policies, which clearly shows that many countries display characteristics normally associated with different types (hybrids and. Therefore, this two-step approach enhances our ability to account and make sense of hybrid welfare forms produced from tensions and contradictions within and between policies.
Resumo:
This research paper presents a five step algorithm to generate tool paths for machining Free form / Irregular Contoured Surface(s) (FICS) by adopting STEP-NC (AP-238) format. In the first step, a parametrized CAD model with FICS is created or imported in UG-NX6.0 CAD package. The second step recognizes the features and calculates a Closeness Index (CI) by comparing them with the B-Splines / Bezier surfaces. The third step utilizes the CI and extracts the necessary data to formulate the blending functions for identified features. In the fourth step Z-level 5 axis tool paths are generated by adopting flat and ball end mill cutters. Finally, in the fifth step, tool paths are integrated with STEP-NC format and validated. All these steps are discussed and explained through a validated industrial component.
Resumo:
As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.
Resumo:
Android is becoming ubiquitous and currently has the largest share of the mobile OS market with billions of application downloads from the official app market. It has also become the platform most targeted by mobile malware that are becoming more sophisticated to evade state-of-the-art detection approaches. Many Android malware families employ obfuscation techniques in order to avoid detection and this may defeat static analysis based approaches. Dynamic analysis on the other hand may be used to overcome this limitation. Hence in this paper we propose DynaLog, a dynamic analysis based framework for characterizing Android applications. The framework provides the capability to analyse the behaviour of applications based on an extensive number of dynamic features. It provides an automated platform for mass analysis and characterization of apps that is useful for quickly identifying and isolating malicious applications. The DynaLog framework leverages existing open source tools to extract and log high level behaviours, API calls, and critical events that can be used to explore the characteristics of an application, thus providing an extensible dynamic analysis platform for detecting Android malware. DynaLog is evaluated using real malware samples and clean applications demonstrating its capabilities for effective analysis and detection of malicious applications.