8 resultados para Vigotsky, Lev

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article challenges prevalent views about Gumilev’s relation to classic Eurasianism. On the basis of previously unavailable correspondence and interviews, it is argued that Lev Gumilev had substantial degree of affinity with the original Eurasian movement understood as a scholarly tradition. This was manifested both in his personal contacts with some of its key members, and in his scholarly work on the nomad history, which remained Eurasian in its spirit. However, the most significant departure from Eurasianism, under-appreciated by most scholars, was his theory of ethnogenesis, which attempted to establish a new naturalistic paradigm for study of history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FMRFamide-related peptides (FaRPs), KHEYLRFamide (AF2) and KSAYMRFamide (PF3) were structurally characterised from the parasitic nematode of sheep, Haemonchus contortus (MH isolate). Both peptides were sequenced in a single gas-phase sequencing run and their structure confirmed by mass spectrometry which identified peptides of 920 Da (C-terminally amidated AF2) and 902/918 Da (C-terminally amidated non-oxidised/oxidised PF3, respectively). AF2 had inhibitory effects on H. contortus muscle and inhibited acetylcholine (ACh, 10 mu M)-induced contractions, with a threshold for activity of I mu M. PF3 induced concentration-dependent contractions of H. contortus (activity threshold, 10 nM) and enhanced ACh contractions. Compared with the MH isolate, an isolate of H. contortus which has reduced sensitivity to cholinergic drugs (Lawes isolate) was less sensitive to the effects of PF3. The concentration-response curves for the cholinergic compounds ACh and levamisole (LEV), and PF3, but not a control, KPNFIRFamide (PF4), showed a statistically similar shift. This study implicates PF3 in the modulation of cholinergic function in H. contortus. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fragmentation of CD+ in intense ultrashort laser pulses was investigated using a coincidence three-dimensional momentum imaging technique improved by employing both transverse and longitudinal electric fields. This allowed clear separation of all fragmentation channels and the determination of the kinetic energy release down to nearly zero, for a molecule with significant mass asymmetry. The most probable dissociation pathways for the two lowest dissociation limits, C+ + D and C+ D+, were identified for both 22-fs, 798-nm and 50-fs, 392-nm pulses. Curiously, the charge asymmetric dissociation of CD2+ was not observed for 392-nm photons, even though it was clearly visible for the fundamental 798 nm at the same peak intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


We demonstrate the ability to control the molecular dissociation rate using femtosecond pulses shaped with third-order dispersion (TOD). Explicitly, a significant 50% enhancement in the dissociation yield for the low lying vibrational levels (v ∼ 6) of an H+2 ion-beam target was measured as a function of TOD. The underlying mechanism responsible for this enhanced dissociation was theoretically identified as non-adiabatic alignment induced by the pre-pulses situated on the leading edge of pulses shaped with negative TOD. This control scheme is expected to work in other molecules as it does not rely on specific characteristics of our test-case H+2 molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peak power consumption is the first order design constraint of data centers. Though peak power consumption is rarely, if ever, observed, the entire data center facility must prepare for it, leading to inefficient usage of its resources. The most prominent way for addressing this issue is to limit the power consumption of the data center IT facility far below its theoretical peak value. Many approaches have been proposed to achieve that, based on the same small set of enforcement mechanisms, but there has been no corresponding work on systematically examining the advantages and disadvantages of each such mechanism. In the absence of such a study,it is unclear what is the optimal mechanism for a given computing environment, which can lead to unnecessarily poor performance if an inappropriate scheme is used. This paper fills this gap by comparing for the first time five widely used power capping mechanisms under the same hardware/software setting. We also explore possible alternative power capping mechanisms beyond what has been previously proposed and evaluate them under the same setup. We systematically analyze the strengths and weaknesses of each mechanism, in terms of energy efficiency, overhead, and predictable behavior. We show how these mechanisms can be combined in order to implement an optimal power capping mechanism which reduces the slow down compared to the most widely used mechanism by up to 88%. Our results provide interesting insights regarding the different trade-offs of power capping techniques, which will be useful for designing and implementing highly efficient power capping in the future.