85 resultados para Ventral hippocampus

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats rapidly learned to find a submerged platform in a water maze at a constant distance and angle from the start point, which changed on every trial. The rats performed accurately in the light and dark, but prior rotation disrupted the latter condition. The rats were then retested after receiving cytotoxic hippocampal or retrosplenial cortex lesions. Retrosplenial lesions had no apparent effect in either the light or dark. Hippocampal lesions impaired performance in both conditions but spared the ability to locate a platform placed in the center of the pool. A hippocampal deficit emerged when this pool-center task was run in the dark. The spatial effects of hippocampal damage extend beyond allocentric tasks to include aspects of idiothetic guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subiculum is in a pivotal position governing the output of the hippocampal formation. Despite this, it is a rather under-explored and sometimes ignored structure. Here, we discuss recent data indicating that the subiculum participates in a wide range of neurocognitive functions and processes. Some of the functions of subiculum are relatively well-known-these include providing a relatively coarse representation of space and participating in, and supporting certain aspects of, memory (particularly in the dynamic bridging of temporal intervals). The subiculum also participates in a wide variety of other neurocognitive functions too. however. Much less well-known are roles for the subiculum, and particularly the ventral subiculum, in the response to fear, stress and anxiety, and in the generation of motivated behaviour (particularly the behaviour that underlies drug addiction and the response to reward). There is an emerging suggestion that the subiculum participates in the temporal control of behaviour. It is notable that these latter findings have emerged from a consideration of instrumental behaviour using operant techniques; it may well be the case that the use of the watermaze or similar spatial tasks to assess subicular function (on the presumption that its functions are very similar to the hippocampus proper) has obscured rather than revealed neurocognitive functions of subiculum. The anatomy of subiculum suggests it participates in a rather subtle fashion in a very broad range of functions, rather than in a relatively more isolated fashion in a narrower range of functions, as might be the case for

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABAA receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR a1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR a1 subunit were all significantly increased in TRMs hippocampus by real time PCR and western blot, respectively; GAT-1 and GABAR a1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR a1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male Sprague-Dawley rats were fitted with two cannulae in the VTA and one cannula in the NTS for co-administration of the mu-opioid receptoragonist DAMGO in one site and the opioid antagonist naltrexone in the other. Injection of DAMGO into the VTA or the NTS stimulated feeding. The increase in food intake after DAMGO injection into the VTA was decreased following injection of naltrexone into the NTS. Furthermore, the increase in food intake after DAMGO injection into the NTS was decreased following injection of naltrexone into the VTA. These results suggest an opioid-mediated feeding association between the VTA and NTS. (C) 2009 Elsevier Ltd. All rights reserved.