44 resultados para Venom gland

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amphibian defensive skin secretions and reptile venoms are rich sources of bioactive peptides with potential pharmacological/pharmaceutical applications. As amphibian and reptile populations are in rapid global decline, our research
group has been developing analytical methods that permit generation of robust molecular data from non-invasive skin secretion samples and venom samples. While previously we have demonstrated that parallel proteome and venom gland
transcriptome analyses can be performed on such samples, here we report the presence of DNA that facilitates the more widely-used applications of gene sequencing, such as molecular phylogenetics, in a non-invasive manner that circumvents specimen sacrifice. From this “surrogate” tissue, we acquired partial 12S and 16S rRNA gene sequences that are presented for illustration purposes. Thus from a single sample of amphibian skin secretion and reptile venom, robust and complementary proteome, transcriptome and genome data can be generated for applications in diverse scientific disciplines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.

Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.

The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reptile venoms are complex cocktails of bioactive molecules, including peptides. While the drug discovery potential of most species remains unrealized, many are endangered and afforded protection under international treaties. In this study, we describe how potential clinically important bioactive peptides and their corresponding mRNAs can be structurally characterized from single, small samples of reptile venom. The potential type-2 diabetes therapeutics, exendin-3 and exendin-4, from the Mexican beaded lizard (Heloderma horridum) and the Gila monster (Heloderma suspectum), respectively, have been characterized at both protein and nucleic acid levels to illustrate the efficacy of the technique and its contribution to biodiversity conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximakinin is an N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the venom of a Chinese toad (Bombina maxima) that displays highly selective activity at mammalian arterial smooth muscle receptors. In this study, we report that incubation of maximakinin with either kallikrein or human saliva generates catabolites with enhanced bioactivity that retain the tissue selective effects of the parent molecule. In addition, we have observed that kallikrein rapidly cleaves the C-terminal arginyl residue of both maximakinin and bradykinin – a cleavage hitherto considered to be performed by a carboxypeptidase that facilitates selective bradykinin receptor targeting. Maximakinin has thus evolved as a `smart' defensive weapon in the toad with inherent resistance to the signal-terminating protease hardware in the potential predator. Thus, natural selection of amphibian skin peptides for antipredator defence, through interspecies delivery by an exogenous secretory mode, produces subtle structural stabilization modifications that can potentially provide new insights for the design of orally active and selectively targeted peptide therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scorpion venoms are a particularly rich source of neurotoxic proteins/peptides that interact in a highly specific fashion with discrete subtypes of ion channels in excitable and non-excitable cells. Here we have employed a recently developed technique to effect molecular cloning and structural characterization of a novel putative potassium channel-blocking toxin from the same sample of venom from the North African scorpion, Androctonus amoreuxi. The deduced precursor open-reading frame is composed of 59 amino acid residues that consists of a signal peptide of approximately 22 amino acid residues followed by a mature toxin of 37 amino acid residues. The mature toxin contains two functionally important residues (Lys27 and Tyr36), constituting a functional dyad motif that may be critical for potassium channel-blocking activity that can be affirmed from structural homologs as occurring in the venoms from other species of Androctonus scorpions. Parallel proteomic/transcriptomic studies can thus be performed on the same scorpion venom sample without sacrifice of the donor animal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prokineticins are small (8 kDa), biologically active secretory proteins whose primary structures have been highly conserved throughout the Animal Kingdom. Representatives have been identified in the defensive skin secretions of several amphibians reflecting the immense structural/functional diversity of polypeptides in such. Here we describe the identification of a prokineticin homolog (designated Bo8) from the skin secretion of the Oriental fire-bellied toad (Bombina orientalis). Full primary structural characterization was achieved using a combination of direct Edman microsequencing, mass spectrometry and cloning of encoding skin cDNA. The latter approach employed a recently described technique that we developed for the cloning of secretory peptide cDNAs from lyophilized skin secretion, and this was further extended to employ lyophilized skin as the starting material for cDNA library construction. The Bo8 precursor was found to consist of an open-reading frame of 96 amino acid residues consisting of a putative 19-residue signal peptide followed by a single 77-residue prokineticin (Mr = 7990 Da). Amino acid substitutions in skin prokineticins from the skin secretions of bombinid toads are confined to discrete sites affording the necessary information for structure/activity studies and analog design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a “smart” defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venoms of buthid scorpions are known to contain basic, single-chain protein toxins (alpha toxins) consisting of 60–70 amino acid residues that are tightly folded by four disulfide bridges. Here we describe isolation and sequencing of three novel putative alpha toxins (AamH1-3) from the venom of the North African scorpion, Androctonus amoreuxi, and subsequent cloning of their precursor cDNAs from the same sample of venom. This experimental approach can expedite functional genomic analyses of the protein toxins from this group of venomous animals and does not require specimen sacrifice for cloning of protein toxin precursor cDNAs.