4 resultados para Velocity speed
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.
Resumo:
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [NII] ?6584 image of Hb 12. We measured from our spectroscopy radial velocities of ~120kms-1 for these knots. We have derived the inclination angle of the hourglass-shaped nebular shell to be ~65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Ha and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.
Resumo:
The present study proposed the semi-empirical methods for determining the efflux velocity from a ship's propeller. Ryan [1] defined the efflux velocity as the maximum velocity taken from a time-averaged velocity distribution along the initial propeller plane. The Laser Doppler Anemometry (LDA) and Computational Fluid Dynamics (CFD) were used to acquire the efflux velocity from the two propellers with different geometrical characteristics. The LDA and CFD results were compared in order to investigate the equation derived from the axial momentum theory. The study confirmed the validation of the axial momentum theory and its linear relationship between the efflux velocity and the multiplication of the rotational speed, propeller diameter and the square root of thrust coefficient. The linear relationship of these two terms is connected by an efflux coefficient and the value of this efflux coefficient reduced when the blade number increased.
Resumo:
The current study investigated the time-averaged velocity and turbulence intensity at the initial downstream flow from a six-bladed ship propeller. The six-bladed propeller provided the rapid periodical pulses of thrust in one revolution due to the blades leading to a complex downstream jet. The six-bladed propeller is popular as a boat racing propeller, but the presentation of its flow structure was rarely found in the previous studies. In this study, the experiments were carried out in a water tank to measure the time-averaged velocity and turbulence intensity by using a Laser Doppler Anemometry (LDA) system. The jet was produced by rotating the propeller at a constant speed powered by an electric motor. The maximum tangential and radial velocities of the six-bladed propeller were of 76% and 17% of the maximum axial velocity respectively. The study found that the six-bladed propeller has a lower tangential velocity, but a higher radial velocity with its own diffusing mechanism when comparing to the three-bladed propeller.