8 resultados para VERTEBROPLASTY

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine the potential of incorporating bovine fibres as a means of reinforcing a typically brittle apatite calcium phosphate cement for vertebroplasty. Type I collagen derived from bovine Achilles tendon was ground cryogenically to produce an average fibre length of 0.96 ± 0.55 mm and manually mixed into the powder phase of an apatite-based cement at 1, 3 or 5 wt.%. Fibre addition of up to 5 wt.% had a significant effect (P = 0.001) on the fracture toughness, which was increased by 172%. Adding =1 wt.% bovine collagen fibres did not compromise the compressive properties significantly, however, a decrease of 39-53% was demonstrated at =3 wt.% fibre loading. Adding bovine collagen to the calcium phosphate cement reduced the initial and final setting times to satisfy the clinical requirements stated for vertebroplasty. The cement viscosity increased in a linear manner (R = 0.975) with increased loading of collagen fibres, such that the injectability was found to be reduced by 83% at 5 wt.% collagen loading. This study suggests for the first time the potential application of a collagen-reinforced calcium phosphate cement as a viable option in the treatment of vertebral fractures, however, issues surrounding efficacious cement delivery need to be addressed. © 2012 Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aim was to develop and apply an experimental technique to determine the biomechanical effect of polymethylmethacrylate (PMMA) and calcium phosphate (CaP) cement on the stiffness and strength of augmented vertebrae following traumatic fracture. Twelve burst type fractures were generated in porcine three-vertebra segments. The specimens were randomly split into two groups (n=6), imaged using microCT and tested under axial loading. The two groups of fractured specimens underwent a vertebroplasty procedure, one group was augmented with CaP cement designed and developed at Queen's University Belfast. The other group was augmented with PMMA cement (WHW Plastics, Hull, UK). The specimens were imaged and re-tested . An intact single vertebra specimen group (n=12) was also imaged and tested under axial loading. A significant decrease (p<0.01) was found between the stiffness of the fractured and intact groups, demonstrating that the fractures generated were sufficiently severe, to adversely affect mechanical behaviour. Significant increase (p<0.01) in failure load was found for the specimen group augmented with the PMMA cement compared to the pre-augmentation group, conversely, no significant increase (p<0.01) was found in the failure load of the specimens augmented with CaP cement, this is attributed to the significantly (p<0.05) lower volume of CaP cement that was successfully injected into the fracture, compared to the PMMA cement. The effect of the percentage of cement fracture fill, cement modulus on the specimen stiffness and ultimate failure load could be investigated further by using the methods developed within this study to test a more injectable CaP cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebroplasty is a minimally invasive surgical procedure, which requires efficacious percutaneous cement delivery via a cannulated needle to restore the strength and stiffness in osteoporotic vertebral bodies. Cement viscosity is understood to influence the injectability, cohesion and cement retention within the vertebral body. Altering the liquid to powder ratio modifies the viscosity of bone cement; however, the cement viscosity-response association between cement fill and augmentation of strength and stiffness is unknown. The aim of this study was to determine the relationship between viscosity, cement fill and the potential augmentation of strength and stiffness in an open pore foam structure that was representative of osteoporotic cancellous bone using an in vitro prophylactic vertebroplasty model. The results showed a strong linear correlation between compressive strength and stiffness augmentation with percentage cement fill, the extent of which was strongly dependent on the cement viscosity. Significant forces were required to ensure maximum delivery of the high viscosity cement using a proprietary screw-driven cement delivery technology. These forces could potentially exceed the normal human physical limit. Similar trends were observed when comparing the results from this study and previously reported cadaveric and animal based in vitro models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in a series of porcine vertebrae using a drop-weight method. The fractured vertebrae were imaged using μCT and tested under axial compression. Twelve of the fractured vertebrae were randomly selected to undergo a vertebroplasty procedure using either a PMMA (n = 6) or a CaP cement variation (n = 6). The specimens were imaged using μCT and re-tested. Finite element models of the fractured and augmented vertebrae were generated from the μCT data and used to compare the effect of fracture void fill with augmented specimen stiffness. Significant increases (p <0.05) in failure load were found for both of the augmented specimen groups compared to the fractured group. The experimental and computational results indicated that neither the CaP cement nor PMMA cement could completely restore the vertebral mechanical behavior to the intact level. The effectiveness of the procedure appeared to be more influenced by the volume of fracture filled rather than by the mechanical properties of the cement itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The broad aim of this work was to investigate and optimise the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen and alkaline phosphatase activity assays respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7 and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important.