116 resultados para Uranium as fuel

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex™ 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g-1 before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L-1 uranium, the uranium concentrations ranged from 0.95 mg L-1 at 1-h equilibrium to 0.08 mg L-1 at 24-h equilibrium for Diphonix and 0.17 mg L-1 at 1-h equilibrium to 0.03 mg L-1 at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (~5 mg L-1 uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of sequestration-based remediation strategies will depend on detailed information, including the predominant U species present as sources before biostimulation and the products produced during and after in situ biostimulation. We used X-ray absorption spectroscopy to determine the valence state and chemical speciation of U in sediment samples collected at a variety of depths through the contaminant plume at the Field Research Center at Oak Ridge, TN, before and after approximately 400 days of in situ biostimulation, as well as in duplicate bioreduced sediments after 363 days of resting conditions. The results indicate that U(VI) in subsurface sediments was partially reduced to 10–40% U(IV) during biostimulation. After biostimulation, U was no longer bound to carbon ligands and was adsorbed to Fe/Mn minerals. Reduction of U(VI) to U(IV) continued in sediment samples stored under anaerobic condition at <4 °C for 12 months, with the fraction of U(IV) in sediments more than doubling and U concentrations in the aqueous phase decreasing from 0.5-0.74 to <0.1 µM. A shift of uranyl species from uranyl bound to phosphorus ligands to uranyl bound to carbon ligands and the formation of nanoparticulate uraninite occurred in the sediment samples during storage.