4 resultados para Toussaint-Louverture
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.
Resumo:
Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions.
Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project
Resumo:
In 2004, the integrated European project GEHA (Genetics of Healthy Ageing) was initiated with the aim of identifying genes involved in healthy ageing and longevity. The first step in the project was the recruitment of more than 2500 pairs of siblings aged 90 years or more together with one younger control person from 15 areas in 11 European countries through a coordinated and standardised effort. A biological sample, preferably a blood sample, was collected from each participant, and basic physical and cognitive measures were obtained together with information about health, life style, and family composition. From 2004 to 2008 a total of 2535 families comprising 5319 nonagenarian siblings were identified and included in the project. In addition, 2548 younger control persons aged 50-75 years were recruited. A total of 2249 complete trios with blood samples from at least two old siblings and the younger control were formed and are available for genetic analyses (e.g. linkage studies and genome-wide association studies). Mortality follow-up improves the possibility of identifying families with the most extreme longevity phenotypes. With a mean follow-up time of 3.7 years the number of families with all participating siblings aged 95 years or more has increased by a factor of 5 to 750 families compared to when interviews were conducted. Thus, the GEHA project represents a unique source in the search for genes related to healthy ageing and longevity.
Resumo:
Currently there is extensive theoretical work on inconsistencies in logic-based systems. Recently, algorithms for identifying inconsistent clauses in a single conjunctive formula have demonstrated that practical application of this work is possible. However, these algorithms have not been extended for full knowledge base systems and have not been applied to real-world knowledge. To address these issues, we propose a new algorithm for finding the inconsistencies in a knowledge base using existing algorithms for finding inconsistent clauses in a formula. An implementation of this algorithm is then presented as an automated tool for finding inconsistencies in a knowledge base and measuring the inconsistency of formulae. Finally, we look at a case study of a network security rule set for exploit detection (QRadar) and suggest how these automated tools can be applied.