10 resultados para Total polar compounds
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Thua nao, a traditional, proteolytic, fermented soybean condiment of northern Thailand, was prepared from cooked whole soybeans by natural flora fermentation. The microbial flora during the fermentation was dominated by Bacillus species. The formation of volatile compounds during the fermentation was studied. In addition, the volatile compounds of two samples of commercial dried thua nao and two samples of commercial Japanese natto were analysed. Fermentation led to a large increase in the concentration of total volatile compounds, from 35 mug kg(-1) wet weight in cooked soybeans to 3500 mug kg(-1) wet weight in 72h fermented material. The major volatile compounds in fermented beans were 3-hydroxybutanone (acetoin), 2-methlybutanoic acid, pyrazines, dimethyl disulphide and 2-pentylfuran. Sun drying of 72 h fermented material resulted in the loss of 65% of total volatiles, including important aroma compounds. The commercial dried thua nao samples had low concentrations of total volatile compounds (380 mug kg(-1) wet weight). It is suggested that improved drying/preservation methods are needed to retain aroma compounds in the traditional products. The natto samples were devoid of aldehydes, aliphatic acids and esters, and sulphur compounds, whereas the thua nao samples contained a diversity of these compounds. Previous investigators have reported these compounds in natto and it is not possible to suggest the existence of systematic differences between the volatile compounds in traditional thua nao prepared with an undefined, mixed microbial flora and those in natto fermented with Bacillus subtilis. (C) 2001 Society of Chemical Industry.
Resumo:
Compounds possessing antioxidant activity play a crucial role in delaying or preventing lipid oxidation in foods and beverages during processing and storage. Such reactions lead to loss of product quality, especially as a consequence of off-flavor formation. The aim of this study was to determine the antioxidant activity of kilned (standard) and roasted (speciality) malts in relation to phenolic compounds, sugars, amino acids, and color [assessed as European Brewing Convention units (degrees EBC) and absorbance at 420 nm]. The concentrations of sugars and amino acids decreased with the intensity of the applied heat treatment, and this was attributed to the extent of the Maillard reaction, as well as sugar caramelization, in the highly roasted malts. Proline, followed by glutamine, was the most abundant free amino/imino acid in the malt samples, except those that were highly roasted, and maltose was the most abundant sugar in all malts. Levels of total phenolic compounds decreased with heat treatment. Catechin and ferulic acid were the most abundant phenolic compounds in the majority of the malts, and amounts were highest in the kilned samples. In highly roasted malts, degradation products of ferulic acid were identified. Antioxidant activity increased with the intensity of heating, in parallel with color formation, and was significantly higher for roasted malts compared to kilned malts. In kilned malts, phenolic compounds were the main identified contributors to antioxidant activity, with Maillard reaction products also playing a role. In roasted malts, Maillard reaction products were responsible for the majority of the antioxidant activity.
Resumo:
Tubers of five cultivars of potato were stored at 4 degreesC for 2 3 and 8 months and baked in a conventional oven The flavor compounds from the baked potato flesh were isolated by headspace adsorption onto Tenax and analyzed by gas chromatography-mass spectrometry On a quantitative basis compounds derived from lipid and Maillard reaction/sugar degradation dominated the flavor isolates with sulfur compounds, methoxypyrazines, and terpenes making smaller contributions Levels of 37 of the > 150 detected compounds were monitored in each cultivar with time of storage Many significant differences were found in levels of individual compounds compound classes and total monitored compounds for the individual effects of cultivar and storage time and for their two way interaction Differences may be explained by variations in levels of flavor precursors and activities of enzymes mediating flavor compound formation among cultivars and storage times In addition differences in agronomic conditions may partly account for variations among cultivars Overall of the compounds monitored those most likely having the greatest flavor impact were 2-isopropyl 3 methyoxypyrazine 2 isobutyl 3-methoxypyrazine dimethyl trisulfide, decanal and 3 methylbutanal, with methylpropanal, 2 methylbutanal methional, and nonanal also being probable important contributors to flavor.
Resumo:
Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.
Resumo:
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.
Resumo:
Nitrofuran antibiotic residues in food continue to be of international concern. The finding of sources of semicarbazide (SEM), other than through the misuse of nitrofurazone, present a challenge to the use of SEM as a definitive marker residue for this drug. Detection of intact (parent) nitrofurazone would avoid confusion over the source of SEM residues. Broiler chickens were fed sub-therapeutic nitrofuran-containing diets and their tissues were analysed for parent compounds and metabolites by liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Depletion half-lives in muscle were longer for tissue-bound metabolite residues, 3.4 days - 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) - to 4.5 days (SEM), than total metabolite residues, 2.0 days (AOZ) to 3.2 days (SEM). Metabolite concentrations were higher in eyes than in muscle. Metabolite half-lives in eyes ranged from 8.5 days (1-aminohydantoin (AHD)) to 20.3 days (SEM). Nitrofuran parent compounds were also detected in eyes. Furaltadone was detected in single eyes after 21 days' withdrawal of a 6 mg kg -1 furaltadone diet. When 50 eyes from broilers containing metabolites in muscle close to the 1 µg kg -1 minimum required performance level (MRPL) were pooled into single samples, 1.2 ng of furazolidone and 31.1 ng of furaltadone were detected, but nitrofurazone was not detected due to the long depletion half-life of SEM in muscle. Further studies are required to improve LC-MS/MS nitrofurazone sensitivity and refine the sample size necessary to use nitrofurazone detection in pooled eyes as a complement to SEM detection in muscle.
Resumo:
The concentrations of a range of micro-organic compounds in the Humber rivers have been measured at weekly intervals over a period of 1 year. The compounds include the triazine herbicides (simazine, atrazine, propazine, desmetryn and prometryn), selected organophosphorus insecticides (fenitrothion, malathion and parathion), phenylurea (chlorotoluron, diuron, isoproturon and linuron) and phenoxyacid herbicides (2,4-D, MCPA, MCPB and mecoprop), phenol derivatives (phenol, 2-ethylphenol, 2-chlorophenol, 4-nitrophenol, 2-methylphenol, 4-ethylphenol and 2,4-dichlorophenol), organochlorine insecticides (HEOD, DDT, TDE, DDE, HCB, alpha-BHC and lindane), PCB's and some synthetic pyrethroid insecticides (cis/trans-permethrin, fenvalerate and cypermethrin). The results indicate the high frequency of occurrence of many compounds in the southern Humber rivers Aire, Calder, Trent and Don compared with the more occasional concentrations found in the upland rivers with catchments dominated by low intensity agriculture. The more water soluble herbicides, atrazine, simazine, isoproturon and diuron are detected frequently in the southern rivers with the highest concentrations and abundance in the rivers Aire, Calder and Trent. The most abundant phenolic compound is 2,4-dichlorophenol usually occurring at concentrations <1 mu g/l. The organochlorine insecticides and PCB's are generally at concentrations <0.01 mu g/l, cis/trans-permethrin are the only synthetic pyrethroids detected and these are found in the rivers Aire and Calder at about equal concentrations of between 0.01 and 0.11 mu g/l. The results of the occurrence of simazine and atrazine in the rivers Trent, Don and Aire illustrate peaks in concentration in the spring and then later in the year during the early autumn coinciding with the first major storm after the summer. In the rivers Trent and Don, the annual exports (March 1994-95) of atrazine are lower than for simazine whereas in the R. Calder the yield of atrazine is higher than for simazine suggesting differences in use in these catchments. The maximum triazine concentration observed, i.e. 8 mu g/l of atrazine in the R. Calder, could have inhibiting effects on the phytoplankton and algal growth, although because of the transient nature of the peaks, recovery is expected to be rapid. The only other compounds measured at concentrations likely to produce detrimental ecotoxicological effects are cis/trans permethrin in the rivers Aire and Calder. (C) 1997 Elsevier Science B.V.
Resumo:
Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results showed that microbial protein synthesis (MCP; 148 vs 171 g/kg DM) and rumen protein degraded balance (DPB; 108 vs 127 g/kg DM) were lower in the CS-Y line, but there were no differences in total truly digested protein in small intestine (DVE) and feed milk value (FMV) between the two lines. In conclusion, the new yellow line had different nutritional, chemical, and structural features compared to the black line. CS-Y provided better nutrient utilization and availability.
Resumo:
PURPOSE: To evaluate the addition of cetuximab to neoadjuvant chemotherapy before chemoradiotherapy in high-risk rectal cancer. PATIENTS AND METHODS: Patients with operable magnetic resonance imaging-defined high-risk rectal cancer received four cycles of capecitabine/oxaliplatin (CAPOX) followed by capecitabine chemoradiotherapy, surgery, and adjuvant CAPOX (four cycles) or the same regimen plus weekly cetuximab (CAPOX+C). The primary end point was complete response (CR; pathologic CR or, in patients not undergoing surgery, radiologic CR) in patients with KRAS/BRAF wild-type tumors. Secondary end points were radiologic response (RR), progression-free survival (PFS), overall survival (OS), and safety in the wild-type and overall populations and a molecular biomarker analysis. RESULTS: One hundred sixty-five eligible patients were randomly assigned. Ninety (60%) of 149 assessable tumors were KRAS or BRAF wild type (CAPOX, n = 44; CAPOX+C, n = 46), and in these patients, the addition of cetuximab did not improve the primary end point of CR (9% v 11%, respectively; P = 1.0; odds ratio, 1.22) or PFS (hazard ratio [HR], 0.65; P = .363). Cetuximab significantly improved RR (CAPOX v CAPOX+C: after chemotherapy, 51% v 71%, respectively; P = .038; after chemoradiation, 75% v 93%, respectively; P = .028) and OS (HR, 0.27; P = .034). Skin toxicity and diarrhea were more frequent in the CAPOX+C arm. CONCLUSION: Cetuximab led to a significant increase in RR and OS in patients with KRAS/BRAF wild-type rectal cancer, but the primary end point of improved CR was not met.
Resumo:
Aflatoxins are a group of carcinogenic compounds produced by Aspergillus fungi that can grow on different agricultural crops. Both acute and chronic exposure to these mycotoxins can cause serious illness. Due to the high occurrence of aflatoxins in crops worldwide fast and cost-effective analytical methods are required for the identification of contaminated agricultural commodities before they are processed into final products and placed on the market. In order to provide new tools for aflatoxin screening two prototype fast ELISA methods: one for the detection of aflatoxin B1 and the other for total aflatoxins were developed. Seven monoclonal antibodies with unique high sensitivity and at the same time good cross-reactivity profiles were produced. The monoclonal antibodies were characterized and two antibodies showing IC50 of 0.037 ng/mL and 0.031 ng/mL for aflatoxin B1 were applied in simple and fast direct competitive ELISA tests. The methods were validated for peanut matrix as this crop is one of the most affected by aflatoxin contamination. The detection capabilities of aflatoxin B1 and total aflatoxins ELISAs were 0.4 μg/kg and 0.3 μg/kg for aflatoxin B1, respectively, which are one of the lowest reported values. Total aflatoxins ELISA was also validated for the detection of aflatoxins B2, G1 and G2. The application of the developed tests was demonstrated by screening 32 peanut samples collected from the UK retailers. Total aflatoxins ELISA was further applied to analyse naturally contaminated maize porridge and distiller's dried grain with solubles samples and the results were correlated with these obtained by UHPLC-MS/MS method.