5 resultados para Tillage.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic geophysical methods have rarely been used in precision agriculture, predominantly due to the perception that they are slow and results require a complex evaluation. This paper explores the possibility of using a recently developed surface wave seismic geophysical approach, the multichannel analysis of surface waves (MASW) method, for assessment of agricultural compaction. This approach has the advantage of being non-intrusive, rapid and is able to produce 2D ground models with a relatively high density of spatial sampling points. The method, which was tested on a research site in Oakpark, Ireland, detected a significant difference in shear wave velocity between a heavily compacted headland and an uncompacted location. The results from this approach compared favourably with those obtained
from measurements of bulk density and penetrometer resistance and demonstrate that the MASW approach can distinguish between the extreme states of heavily compacted and uncompacted soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus × giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local- and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community coalescence is a recently introduced term describing the interaction of entire communities and their environments. We here explicitly place the concept of community coalescence in a soil microbial context, exploring intrinsic and extrinsic drivers of such coalescence events. Examples of intrinsic events include the action of earthworms and the dynamics of soil aggregates, while extrinsic events are exemplified by tillage, flooding, litter-fall, outplanting, and the addition of materials containing microbial communities. Aspects of global change may alter the frequency or severity of coalescence events. We highlight functional consequences of community coalescence in soil, and suggest ways to experimentally tackle this phenomenon. Soil ecology as a whole stands to benefit from conceptualizing soil biodiversity in terms of dynamic coalescent microbial assemblages.