3 resultados para Thermal losses

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed investigation on planar two dimensional metallodielectric dipole arrays with enhanced near-fields for sensing applications was carried out. Two approaches for enhancing the near-fields and increasing the quality factor were studied. The reactive power stored in the vicinity of the array at resonance increases rapidly with increasing periodicity. Higher quality factors are produced as a result. The excitation of the odd mode in the presence of a perturbation gives rise to a sharp resonance with near-field enhanced by at least an order of magnitude compared to unperturbed arrays. The trade-off between near-field enhancement and thermal losses was also studied, and the effect of supporting dielectric layers on thermal losses and quality factors were examined. Secondary transmissions due to the dielectric alone were found to enhance and reduce cyclically the quality factor as a function of the thickness of the dielectric material. The performance of a perturbed frequency selective surface in sensing nearby materials was investigated. Finally, unperturbed and perturbed arrays working at infrared frequencies were demonstrated experimentally. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3604785]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A near-isothermal micro-trickle bed reactor operated under radio frequency heating was developed. The reactor bed was packed with nickel ferrite micro-particles of 110. μm diameter, generating heat by the application of RF field at 180. kHz. Hydrodynamics in a co-current configuration was analysed and heat transfer rates were determined at temperature ranging from 55 to 100. °C. A multi-zone reactor bed of several heating and catalytic zones was proposed in order to achieve near-isothermal operations. Exact positioning, number of the heating zones and length of the heating zones composed of a mixture of nickel ferrite and a catalyst were determined by solving a one dimensional model of heat transfer by conduction and convection. The conductive losses contributed up to 30% in the total thermal losses from the reactor. Three heating zones were required to obtain an isothermal length of 50. mm with a temperature non-uniformity of 2. K. A good agreement between the modelling and experimental results was obtained for temperature profiles of the reactor. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double Skin Façades (DSFs) are becoming increasingly popular architecture for commercial office buildings. Although DSFs are widely accepted to have the capacity to offer significant passive benefits and enable low energy building performance, there remains a paucity of knowledge with regard to their operation. Identification of the most determinant architectural parameters of DSFs is the focus of ongoing research. This paper presents an experimental and simulation study of a DSF installed on a commercial building in Dublin, Ireland. The DSF is south facing and acts to buffer the building from winter heat losses, but risks enhancing over-heating on sunny days. The façade is extensively monitored during winter months. Computational Fluid Dynamic (CFD) models are used to simulate the convective operation of the DSF. This research concludes DSFs as suited for passive, low energy architecture in temperature climates such as Ireland but identifies issues requiring attention in DSF design.