146 resultados para Tensile tests
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Injection-molded short- and long-glass fiber/polyamide 6,6 composites were subjected to tensile tests. To measure the effectiveness of the fibers in reinforcing the composites, a computational approach was employed to compute the fiber– matrix ISS, orientation factor, reinforcement efficiency, tensile-, and fiber length-related properties. Although the LFCs showed great improvement in fiber characteristics compared to the SFCs, enhancement in tensile properties was small, which is believed to be due to the larger fiber diameter. Kelly–Tyson model provides good approximation for the computation of ISS and tensile-related properties.
Resumo:
In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.
Resumo:
Two ferritic/martensitic steels, T91 steel and newly developed SIMP steel, were subject to tensile test after being oxidized in the liquid lead-bismuth eutectic (LBE) at 873 K for 500 h, 1000 h and 2000 h. Tensile tests were also carried out on the steels only thermally aged at 873 K. The result shows that thermal aging has no effect. Exposure to LBE at 873 K leads to a slight decrease in strength, but a large decrease in elongation when tested at 873 K. When tested at 873 K after 2000 h exposure, the tensile strength of T91 decreases slightly, and elongation from 39% to 21%. For SIMP, the decreases are slightly and from 44% to 28%, for tensile strength and elongation, respectively. The room temperature strength has slightly larger percentage reductions after the LBE exposure, but the elongation changes little.
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus
(and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of
the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or
orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.
Resumo:
Experimental tests have been completed for high-strength 8.8 bolts for studying their mechanical performance subjected to tensile loading. As observed from these tests, failure of structural bolts has been identified as in one of two ways: threads stripping and necking of the threaded portion of the bolt shank, which is possibly due to the degree of fit between internal and external threads. Following the experimental work, a numerical approach has been developed for demonstration of the tensile performance with proper consideration of tolerance class between bolts and nuts. The degree of fit between internal and external threads has been identified as a critical factor affecting failure mechanisms of high-strength structural bolts in tension, which is caused by the machining process. In addition, different constitutive material laws have been taken into account in the numerical simulation, demonstrating the entire failure mechanism for structural bolts with different tolerance classes in their threads. It is also observed that the bolt capacities are closely associated with their failure mechanisms.