82 resultados para Telemedicina, Body Area Network, Tecnologie Wireless, Standard di comunicazione, Sensori

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Channel randomness can be exploited to generate secret keys. However, to ensure secrecy, it is necessary that the channel response of any eavesdropping party remain sufficiently de-correlated with that of the legitimate users'. In this paper, we investigate whether such de-correlation occurs for a body area network (BAN) operating in an indoor environment at 2.45 GHz. The hypothetical BAN configuration consisted of two legitimate transceivers, one situated on the user's left wrist and the other on the user's waist. The eavesdroppers were positioned in either a co-located or distributed manner in the area surrounding the BAN user. Using the simultaneous channel response measured at the legitimate BAN nodes and the eavesdropper positions for stationary and mobile scenarios, we analyze the localized correlation coefficient. This allows us to determine if it is possible to generate secret keys in the presence of multiple eavesdroppers in an indoor environment. Our experimental results show that although channel reciprocity was observed for both the stationary and the mobile scenarios, a higher de-correlation between the legitimate users' channels was observed for the stationary case. This indicates that mobile scenarios are better suited for secret key generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body Area Networks are unique in that the large-scale mobility of users allows the network itself to travel across a diverse range of operating domains or even to enter new and unknown environments. This network mobility is unlike node mobility in that sensed changes in inter-network interference level may be used to identify opportunities for intelligent inter-networking, for example, by merging or splitting from other networks, thus providing an extra degree of freedom. This paper introduces the concept of context-aware bodynets for interactive environments using inter-network interference sensing. New ideas are explored at both the physical and link layers with an investigation based on a 'smart' office environment. A series of carefully controlled measurements of the mesh interconnectivity both within and between an ambulatory body area network and a stationary desk-based network were performed using 2.45 GHz nodes. Received signal strength and carrier to interference ratio time series for selected node to node links are presented. The results provide an insight into the potential interference between the mobile and static networks and highlight the possibility for automatic identification of network merging and splitting opportunities. © 2010 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the characteristics of the complex received signal in body area networks for two environments at the opposite ends of the multipath spectrum at 2.45 GHz. Important attributes of the complex channel such as the Gaussianity of the quadrature components and power imbalance, which form the basis of many popular fading models, are investigated. It is found that in anechoic environments the assumption of Gaussian distributed quadrature components will not always yield a satisfactory fit. Using a complex received signal model which considers a non-isotropic scattered signal contribution along with the presence of an optional dominant signal component, we use an autocorrelation function originally derived for mobile-to-mobile communications to model the temporal behavior of a range of dynamic body area network channels with considerable success. In reverberant environments, it was observed that the real part of the complex autocorrelation function for body area network channels decayed slightly quicker than that expected in traditional land mobile channels. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using seven strategically placed, time-synchronized bodyworn receivers covering the head, upper front and back torso, and the limbs, we have investigated the effect of user state: stationary or mobile and local environment: anechoic chamber, open office area and hallway upon first and second order statistics for on-body fading channels. Three candidate models were considered: Nakagami, Rice and lognormal. Using maximum likelihood estimation and the Akaike information criterion it was established that the Nakagami-m distribution best described small-scale fading for the majority of on-body channels over all the measurement scenarios. When the user was stationary, Nakagami-m parameters were found to be much greater than 1, irrespective of local surroundings. For mobile channels, Nakagami-m parameters significantly decreased, with channels in the open office area and hallway experiencing the worst fading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization and understanding of body to body communication channels is a pivotal step in the development of emerging wireless applications such as ad-hoc personnel localisation and context aware body area networks (CABAN). The latter is a recent innovation where the inherent mobility of body area networks can be used to improve the coexistence of multiple co-located BAN users. Rather than simply accepting reductions in communication performance, sensed changes in inter-network co-channel interference levels may facilitate intelligent inter-networking; for example merging or splitting with other BANs that remain in the same domain. This paper investigates the inter-body interference using controlled measurements of the full mesh interconnectivity between two ambulatory BANs operating in the same environment at 2.45 GHz. Each of the twelve network nodes reported received signal strength to allow for the creation of carrier to interference ratio time series with an overall entire mesh sampling period of 54 ms. The results indicate that even with two mobile networks, it is possible to identify the onset of co-channel interference as the BAN users move towards each other and, similarly, the transition to more favourable physical layer channel conditions as they move apart. © 2011 IEEE.