33 resultados para Taylor expansions
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.
Resumo:
In this paper, a model is presented that describes the pressure drop of gas-liquid Taylor flow in round capillaries with a channel diameter typically less than 1 mm. The analysis of Bretherton (J Fluid Mech 10:166-188, 1961) for the pressure drop over a single gas bubble for vanishing liquid film thickness is extended to include a non-negligible liquid film thickness using the analysis of Aussillous and Qu,r, (Phys Fluids 12(10):2367-2371, 2000). This result is combined with the Hagen-Poiseuille equation for liquid flow using a mass balance-based Taylor flow model previously developed by the authors (Warnier et al. in Chem Eng J 135S:S153-S158, 2007). The model presented in this paper includes the effect of the liquid slug length on the pressure drop similar to the model of Kreutzer et al. (AIChE J 51(9):2428-2440, 2005). Additionally, the gas bubble velocity is taken into account, thereby increasing the accuracy of the pressure drop predictions compared to those of the model of Kreutzer et al. Experimental data were obtained for nitrogen-water Taylor flow in a round glass channel with an inner diameter of 250 mu m. The capillary number Ca (gl) varied between 2.3 x 10(-3) and 8.8 x 10(-3) and the Reynolds number Re (gl) varied between 41 and 159. The presented model describes the experimental results with an accuracy of +/- 4% of the measured values.