68 resultados para TRANSPLANT INFECTIOUS DISEASE
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this ‘priority effect’ was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host–multi-parasite interactions as drivers of host–pathogen community structure
Resumo:
Early meningococcal disease (MD) diagnosis is difficult. We assessed rapid molecular testing of respiratory specimens. We performed genotyping of respiratory swabs, blood, and cerebrospinal fluid from children with suspected disease and nasal swabs (NSs) from matched controls. Thirty-nine of 104 suspected cases had confirmed disease. Four controls were carriers. Throat swab ctrA and porA testing for detection of disease gave a sensitivity of 81% (17/21), specificity of 100% (44/44), positive predictive value (PPV) of 100% (17/17), negative predictive value (NPV) of 92% (44/48), and relative risk of 12. NS ctrA and porA testing gave a sensitivity of 51% (20/39), specificity of 95% (62/65), PPV of 87% (20/23), NPV of 77% (62/81), and relative risk of 4. Including only the 86 NSs taken within 48 h of presentation, the results were sensitivity of 60% (18/30), specificity of 96% (54/56), PPV of 90% (18/20), NPV of 82% (54/66), and relative risk of 5. Swab type agreement was excellent (kappa 0.80, P
Resumo:
This study demonstrates the feasibility of using quantitative real time PCR to measure genomic bacterial load in the nasopharynx of children with invasive meningococcal disease and shows that these loads are exceptionally high (median 6.6 x 105 (Range 1.2 x 105 to 1.1 x 108) genome copies of Neisseria meningitidis per swab).
Resumo:
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Resumo:
AIMS/HYPOTHESIS: To determine if vaccinations and infections are associated with the subsequent risk of Type I (insulin-dependent) diabetes mellitus in childhood. METHOD: Seven centres in Europe with access to population-based registers of children with Type I diabetes diagnosed under 15 years of age participated in a case-control study of environmental risk factors. Control children were chosen at random in each centre either from population registers or from schools and policlinics. Data on maternal and neonatal infections, common childhood infections and vaccinations were obtained for 900 cases and 2302 control children from hospital and clinic records and from parental responses to a questionnaire or interview. RESULTS: Infections early in the child's life noted in the hospital record were found to be associated with an increased risk of diabetes, although the odds ratio of 1.61 (95% confidence limits 1.11, 2.33) was significant only after adjustment for confounding variables. None of the common childhood infectious diseases was found to be associated with diabetes and neither was there evidence that any common childhood vaccination modified the risk of diabetes. Pre-school day-care attendance, a proxy measure for total infectious disease exposure in early childhood, was found, however, to be inversely associated with diabetes, with a pooled odds ratio of 0.59 (95% confidence limits 0.46, 0.76) after adjustment for confounding variables. CONCLUSION/INTERPRETATION: It seems likely that the explanation for these contrasting findings of an increased risk associated with perinatal infections coupled with a protective effect of pre-school day care lies in the age-dependent modifying influence of infections on the developing immune system.
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).
Resumo:
The paper focuses on the ways in which medical discourses of HIV transmission risk, personal bodily meanings and reproductive decision-making are re-negotiated within the context of sero-different relationships, in which one partner is known to be HIV-positive. Eighteen in-depth interviews were conducted with 10 individuals in Northern Ireland during 2008–2009. Drawing on an embodied sociological approach, the findings show that physical pleasure, love, commitment, a desire to conceive without medical interventions and a dislike of condoms within regular ongoing relationships, shaped individuals' sense of biological risk. In addition, the subjective logic that a partner had not previously become infected through unprotected sex prior to knowledge of HIV status and the added security of an undetectable viral load significantly impacted upon women's and, especially, men's decisions to have unprotected sex in order to conceive. The findings speak to the importance of reframing public health campaigns and clinical counselling discourses on HIV risk transmission to acknowledge how couples negotiate this risk, alongside pleasure and commitment within ongoing relationships.
Resumo:
Medical device related infections are becoming an increasing prevalent area of infectious disease. They can be attributed to a multitude of factors from an increasing elderly population with reduced immunological status to increasing microbial resistance and evolution. Of greatest significance is the failure of standard antimicrobial regimens to eradicate biomaterial-related infections due to the formation of microbial biofilms consisting of extracellular polymeric substances. Biofilms form and thrive at the abiotic device surface where nutrients are more concentrated and symbiotic colonies can be formed. The formation of a biofilm matrix occurs in a series of steps beginning with reversible attachment of bacteria to the surface of the substrate and terminating in dispersion of mature biofilm microcolonies that aim to colonise fresh surfaces high in nutrients. Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms. The extent of the infection and the pathogen(s) present can be attributed to both the form and location of the device. It is important that preventative measures and treatment strategies relate to combating the causative microorganisms. Preventative measures include: the use of anti-infective biomaterials that can be coated or incorporated with standard or innovative antimicrobials; modified anti-adhesive medical devices; environmental sterilisation protocols and prophylactic drug therapy. Treatment of established infection may require removal of the device or if deemed possible the device may be salvageable through the initiation of antimicrobial therapy. The increasing spectre of antibiotic resistance and medical device related infections are a large and increasing burden on health care systems and the patient’s quality of life and long term prognosis. As an infectious disease it represents one of the most difficult challenges facing modern science and healthcare.
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
We prospectively studied the course of colonization and sepsis with Staphylococcus epidermidis among 29 very low birth weight neonates undergoing prolonged umbilical catheterization. S. epidermidis bacteremia occurred in 7 patients. In 6 bacteremia was preceded by positive colonization cultures. Isolates obtained from nares, base of umbilicus, umbilical catheter entry sites, catheter tips and blood were examined for plasmid DNA profiles. In 4 patients the plasmid profiles of the catheter entry site isolates were identical with those of the blood isolates. In the other 3 bacteremic patients plasmid profiles of the catheter entry site and blood isolates were different. No correlation was observed in the plasmid DNA patterns of isolates obtained from catheter tip cultures as compared to the corresponding blood cultures. The blood isolates from bacteremic patients had different plasmid profiles.