9 resultados para THERMAL RESPONSE
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.
Resumo:
Temperature and moisture conditions are key drivers of stone weathering processes in both natural and built environments. Given their importance in the breakdown of stone, a detailed understanding of their temporal and spatial variability is central to understanding present-day weathering behaviour and for predicting how climate change may influence the nature and rates of future stone decay.
Subsurface temperature and moisture data are reported from quarry fresh Peakmoor Sandstone samples exposed during summer (June–July) and late autumn / early winter (October–December) in a mid-latitude, temperate maritime environment. These data demonstrate that the subsurface thermal response of sandstone comprises numerous short-term (minutes), low magnitude fluctuations superimposed upon larger-scale diurnal heating and cooling cycles with distinct aspect-related differences. The short-term fluctuations create conditions in the outer 5–10 mm of stone that are much more ‘energetic’ in comparison to the more subdued thermal cycling that occurs deeper within the sandstone samples.
Data show that moisture dynamics are equally complex with a near-surface region (5–10 mm) in which frequent moisture cycling takes place and this, combined with the thermal dynamism exhibited by the same region may have significant implications for the nature and rate of weathering activity. Data indicate that moisture input from rainfall, particularly when it is wind-driven, can travel deep into the stone where it can prolong the time of wetness. This most often occurs during wetter winter months when moisture input is high and evaporative loss is low but can happen at any time during the year when the hydraulic connection between near-surface and deeper regions of the stone is disrupted with subsequent loss of moisture from depth slowing as it becomes reliant on vapour diffusion alone.
These data illustrate the complexity of temperature and moisture conditions in sandstone exposed to the ‘moderate’ conditions of a temperate maritime environment. They highlight differences in thermal and moisture cycling between near-surface (5–10 mm) and deeper regions within the stone and contribute towards a better understanding of the development of structural and mineralogical heterogeneity between the stone surface and substrate.
Resumo:
1. We compared resting metabolic rate (RMR) and non-shivering thermogenesis (NST) values between founder and F1-populations of winter-acclimatized Acomys cahirinus that originated from north- and south-facing slopes (NFS and SFS) of the same valley, representing mesic and xeric habitats. 2. NST was measured by the increase in oxygen consumption (VO2) and body temperature (T-b) after a noradrenaline (NA) injection (VO2 NA, TbNA). 3. Body mass and TbNA values were higher in SFS F1-mice, while RMR and VO2 NA values were higher in NFS F1-mice. Differences were not apparent in founders. 4. Results are consistent with NFS and SFS mice being considered as
Resumo:
Analysis of non-traditional Variable Stiffness (VS) laminates, obtained by steering the fiber orientation as a spatial function of location, have shown to improve buckling load carrying capacity of flat rectangular panels under axial compressive loads. In some cases the buckling load of simply supported panels doubled compared to the best conventional laminate with straight fibers. Two distinct cases of stiffness variation, one due to fiber orientation variation in the direction of the loading, and the other one perpendicular to the loading direction, were identified as possible contributors to the buckling load improvements. In the first case, the increase was attributed to the favorable distribution of the transverse in-plane stresses over the panel platform. In the second case, a higher degree of improvement was obtained due to the re-distribution of the applied in-plane loads. Experimental results, however, showed substantially higher levels of buckling load improvements compared with theoretical predictions. The additional improvement was determined to be due to residual stresses introduced during curing of the laminates. The present paper provides a simplified thermomechanical analysis of residual stress state of variable stiffness laminates. Systematic parametric analyses of both cases of fiber orientation variations show that, indeed much higher buckling loads could result from the residual stresses present in such laminates.
Resumo:
Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.
Resumo:
The effect of a radio-frequency driven, microscale non thermal atmospheric pressure plasma jet operated in helium with vol. 0.3% molecular oxygen gas admixture, on PC-3 prostate cancer cells has been investigated. The viability of cells exposed to the plasma was found to decrease with increasing plasma exposure time, with apoptosis through caspase and PARP cleavage being observed. High concentrations of nitrite and nitrate were detected in growth media exposed to the plasma and were found to increase in a time dependent manner post exposure. This indicates a slow release of reactive nitrogen species into the growth media, which is likely to influence cellular response to plasma exposure.
Resumo:
Stone surfaces are sensitive to their environment. This means that they will often respond to exposure conditions by manifesting a change in surface characteristics. Such changes can be more than simply aesthetic, creating surface/subsurface heterogeneity in stone at the block scale, promoting stress gradients to be set up as surface response to, for example, temperature fluctuations, can diverge from subsurface response. This paper reports preliminary experiments investigating the potential of biofilms and iron precipitation as surface-modifiers on stone, exploring the idea of block-scale surface-to-depth heterogeneity, and investigating how physical alteration in the surface and near-surface zone can have implications for subsurface response and potentially for long-term decay patterns. Salt weathering simulations on fresh and surface-modified stone suggest that even subtle surface modification can have significant implications for moisture uptake and retention, salt concentration and distribution from surface to depth, over the period of the experimental run. The accumulation of salt may increase the retention of moisture, by modifying vapour pressure differentials and the rate of evaporation.
Temperature fluctuation experiments suggest that the presence of a biofilm can have an impact on energy transfer processes that occur at the stone surface (for example, buffering against temperature fluctuation), affecting surface-to-depth stress gradients. Ultimately, fresh and surface-modified blocks mask different kinds of system, which respond to inputs differently because of different storage mechanisms, encouraging divergent behaviour between fresh and surface modified stone over time.
Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.
Resumo:
The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.