54 resultados para Supercritical Co2
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The first report of time-resolved resonance Raman (TR(3)) scattering in a supercritical fluid is presented. TR(3) spectra of the lowest triplet excited state (T-1) of anthracene in supercritical (SC) CO2 have been obtained over the pressure range 90-500 bar. These data have been complemented by conventional flash photolysis measurements of the excited state lifetime, transient absorbance difference, and fluorescence spectra over a similar pressure range. The spectroscopic data show systematic changes with increasing pressure; the Delta A spectra of the TI state recorded at two different temperatures display a red shift with increasing fluid pressure, which is in agreement with earlier work carried out over a smaller range of pressures. Similar shifts in the fluorescence are also observed. The vibrational frequencies of the T-1 state of anthracene are found to be relatively insensitive to applied pressure; indeed, the transient bands are readily identified by comparison with resonance Raman (RR) spectra of the T-1 state in cyclohexane solution. Small but well-defined shifts to lower cm(-1) with increasing pressure are observed in some of the vibrational bands of SC COE. The most marked change in the excited state Raman spectra is that the intensity of the T-1 anthracene features, relative to those of CO2, increases with applied pressure. The information which each of the above spectroscopic methods gives on the question of how pressure changes affect the structure and local environment of the excited state probe molecule in the SCF is discussed. Possible explanations for the observed increase in RR band intensities in terms of increased resonance Raman enhancement arising from the spectral shifts and/or the increased solubility of anthracene in CO2 with increasing pressure are also considered.
Resumo:
The combination of ionic liquids (ILs) and supercritical CO2 (scCO2) allows efficient catalytic processes to be developed. Catalyst separation is generally a major challenge when enzymes or homogeneous organometallic catalysts are utilised for reactions, and IL–scCO2 systems address these separation problems, facilitating the recycling or continual use of the catalyst. Typically these systems involve a catalyst being dissolved in an IL and this is where it remains during the process, with scCO2 extracting the products from the IL (catalyst) phase. ILs and many catalysts are not soluble in scCO2 and this facilitates the clean separation of products from the catalyst and IL. When the pressure is reduced in a collection chamber, the scCO2 returns to CO2 gas and products can be obtained without contamination of catalyst or solvents. It is possible to operate IL–scCO2 systems in a continuous flow manner and this further improves the efficiency and industrial potential of these systems. This chapter will introduce the fundamental properties of these multiphase catalytic systems. It will also highlight key examples of catalytic processes from the academic literature which illustrate the benefits of utilising this combination of solvents for catalysis
Resumo:
A low cost supercritical CO foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO and by the formation of a porous structure following the escape of CO from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.
Resumo:
Previously we have shown that organic solutes can be extracted from ionic liquids (ILs) with supercritical CO2 and that ILs can be induced to separate from organic and aqueous mixtures by applying gaseous CO2 pressure. Thus, we are interested in the solvent strength of IL/CO2 mixtures. Here we use 4-nitroaniline, N,N-diethyl-4-nitroaniline and Reichardt's dye 33 to determine the Kamlet-Taft parameters for four different imidazolium based ILs and their mixtures with CO2 at 25 and 40degreesC. The effect of temperature and carbon dioxide concentration on these parameters was determined. The polarizability parameter depends weakly on the CO2 concentration. However, the hydrogen bond donating ability and the hydrogen bond accepting ability are virtually independent Of CO2 pressure. The results indicate that the strong interactions between ILs and probe molecules are not influenced by CO2.
Resumo:
The hydroformylation of 1-octene under continuous flow conditions is described. The system involves dissolving the catalyst, made in situ from [ Rh(acac)(CO)(2)] (acacH = 2,4- pentanedione) and [RMIM][TPPMS] ( RMIM = 1-propyl (Pr), 1-pentyl (Pn) or 1-octyl (O)-3-methyl imidazolium, TPPMS = Ph2P(3-C6H4SO3)), in a mixture of nonanal and 1-octene and passing the substrate, 1-octene, together with CO and H-2 through the system dissolved in supercritical CO2 (scCO(2)). [PrMIM][TPPMS] is poorly soluble in the medium so heavy rhodium leaching (as complexes not containing phosphine) occurs in the early part of the reaction. [PnMIM][ PPMS] affords good rates at relatively low catalyst loadings and relatively low overall pressure (125 bar) with rhodium losses <1 ppm, but the catalyst precipitates at higher catalyst loadings, leading to lower reaction rates. [OMIM][ TPPMS] is the most soluble ligand and promotes high reaction rates, although preliminary experiments suggested that rhodium leaching was high at 5-10 ppm. Optimisation aimed at balancing flows so that the level within the reactor remained constant involved a reactor set up based around a reactor fitted with a sight glass and sparging stirrer with the CO2 being fed by a cooled head HPLC pump, 1-octene by a standard HPLC pump and CO/H-2 through a mass flow controller. The pressure was controlled by a back pressure regulator. Using this set up, [OMIM][ TPPMS] as the ligand and a total pressure of 140 bar, it was possible to control the level within the reactor and obtain a turnover frequency of ca. 180 h(-1). Rhodium losses in the optimised system were 100 ppb. Transport studies showed that 1-octene is preferentially transported over the aldehydes at all pressures, although the difference in mol fraction in the mobile phase was less at lower pressures. Nonanal in the mobile phase suppresses the extraction of 1-octene to some extent, so it is better to operate at high conversion and low pressure to optimise the extraction of the products relative to the substrate. CO and H2 in the mobile phase also suppress the extraction effciency by as much as 80%.
Resumo:
We describe perfluoropolyether (PFPE) surfactants which are capable of stabilising the water/CO2 interface and present FTIR spectroscopic evidence for the formation of water in supercritical carbon dioxide microemulsions. A wide variety of single chain surfactants of differing chain lengths but similar structure has been screened and the effect of the surfactant chain length on the water uptake was studied. The ammonium carboxylate of the PFPE surfactant Krytox FSL(TM) with an average molecular weight of 2500 g mol(-1) was demonstrated to be the surfactant capable of dissolving the most water out of all the tested surfactants and hence to have the optimum chain length. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&[micro] and 7&[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku™, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar™ Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva™, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.
Resumo:
Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.
Measurements of absolute, single charge-exchange cross sections of H+, He+ and He2+ with H2O and CO2
Resumo:
Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.
Resumo:
We present ISO-SWS spectra of the O-rich Mira variable R Gas, showing CO2 in absorption and emission, and H2O in absorption. The CO2 absorption feature is the 01(1)0 - 00(0)0 ro-vibrationaI band at 14.97 mu m. The emission features are the 10(0)0-01(1)0 and 11(1)0 - 02(2)0 re-vibrational transitions at 13.87 and 13.48 mu m respectively. The water absorption spectrum shows the nu(1) and nu(3) re-vibrational bands in the 2.75 - 3 mu m region. Using LTE models, we derive physical parameters for the features. We find the CO2 emission temperature to be similar to 1100 K. We discuss the nature of the CO2 feature at 15 mu m and show that it can be modeled as an emission/absorption band by deviating front thermal equilibrium for the population of the 01(1)0 vibrational level. The H2O absorption spectrum is shown to arise from gas at different temperatures, but can be fit reasonably well with two components at T = 950 K and T = 250 K. The CO2 emission and hut H2O absorption temperatures an similar, suggesting chat these features probe the same region of the inner envelope. We discuss the inner envelope chemistry using molecular equilibrium calculations and recent modeling work by Duari et al. (1999), and find our observations consistent with the results.