28 resultados para Sugar pine
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The formation of lamellae in soils is not clearly understood. The objectives of this study are to examine the microscopical characteristics of selected well developed lamellae inorder to identify the major processes involved in their formation at the Big Pine Tree Archaeological site on the Savannah River, South Carolina. Well developed lamellae have formed in a fine sandy alluvial soil that is about 11,000 to 12,000 years old. In the field, these lamellae are observed as 1 to 4.2 cm thick horizontal layers having a smooth upper and a wavy, sometimes irregular, lower boundary with adjacent interlamellae horizons. Soil thin sections reveal denser accumulations of brown fine silt and clay coatings in the upper and lower sections of the lamellae. The center of the lamellae has mainly orange highly oriented discontinuous clay coatings bridging quartz grains and some silt accumulations. Although, horizontal layering of denser areas (accumulations of fine silt and clay coatings) is also observed in the middle of the lamellae. The interlamellae horizons are mainly loose quartz grains. Low total carbon values (
Resumo:
Mixtures of cysteine, reducing sugar (xylose or glucose), and starch were extrusion cooked using feed pH values of 5.5, 6.5, and 7.5 and target die temperatures of 120, 150, and 180 degreesC. Volatile compounds were isolated by headspace trapping onto Tenax and analyzed by gas chromatography-mass spectrometry. Eighty and 38 compounds, respectively, were identified from extrudates prepared using glucose and xylose. Amounts of most compounds increased with temperature and pH. Aliphatic sulfur compounds, thiophenes, pyrazines, and thiazoles were the most abundant chemical classes for the glucose samples, whereas for xylose extrudates highest levels were obtained for non-sulfur-containing furans, thiophenes, sulfur-containing furans, and pyrazines. 2-Furanmethanethiol and 2-methyl-3-furanthiol were present in extrudates prepared using both sugars, but levels were higher in xylose samples. The profiles of reaction products were different from those obtained from aqueous or reduced-moisture systems based on cysteine and either glucose or ribose.
Resumo:
Tree-ring analysis of subfossil Pinus sylvestris L., from nine new peatland sites located beyond the species’ current northern limit in Scotland, established a regional chronology called WRATH-9. The chronology has been provisionally dated against Irish pine chronologies and provides the first annual resolution picture of Scots pine expansion from c. 3200 bc and subsequent demise from c. 3000 bc. Pine germination and growth is suggested to be associated with a widespread fall in bog water-tables that indicates a regional climatic control. Bog pines progressively declined in number, rather than died out in a single event, reflecting their growth in a marginal habitat, close to a critical ecological threshold. The use of tree-ring sequences from in situ bog pine macrofossils provides a higher resolution insight into past conditions than possible with existing radiocarbon and pollen-based chronologies.
Resumo:
The role of lipopolysaccharide (LPS) in entry of Salmonella Typhimurium into epithelial cells remains unclear. In this study, we tested the ability of a series of mutants with deletions in genes for the synthesis and assembly of the O antigen and the outer core of LPS to adhere to and invade HeLa, BHK, and IB3 epithelial cells lines. Mutants devoid of O antigen, or that synthesized only one O antigen unit, or with altered O antigen chain lengths were as able as the wild type to enter epithelial cells, indicating that this polysaccharide is not required for invasion of epithelial cells in vitro. In contrast, the LPS core plays a role in the interaction of S. Typhimurium with epithelial cells. The minimal core structure required for adherence and invasion comprised the inner core and residues Glc I Gal I of the outer core. A mutant of S. Typhimurium that produced a truncated LPS core lacking the terminal galactose residue had a significant lower level of adherence to and ingestion by the three epithelial cell lines than did strains with this characteristic. Complementation of the LPS production defect recovered invasion to parental levels. Heat-killed bacteria with a core composed of Glc 1 Gal I. but not bacteria with a core composed of Glc 1, inhibited uptake of the wild type by HeLa cells. A comparison of the chemical structure of the S. Typhi core with the published chemical structure of that of S. Typhimurium indicated that the Glc I Gal 1 Glc 11 backbone is conserved in both serovars. However, S. Typhi requires a terminal glucose for maximal invasion. Therefore, our data indicate that critical saccharide residues of the outer core play different roles in the early interactions of serovars Typhi and Typhimurium with epithelial cells. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.
Resumo:
One of the most common pathways for the export of O-specific lipopolysaccharide (LPS) across the plasma membrane requires the participation of the Wzx protein. Wzx belongs to a family of integral membrane proteins that share little conservation in their primary amino acid sequence, making it difficult to delineate functional domains. This paper reports the cloning and expression in Escherichia coli K-12 of various Wzx homologues from different bacteria as FLAG epitope-tagged protein fusions. A reconstitution system for O16 LPS synthesis was used to assess the ability of each Wzx protein to complement an E. coli K-12 Deltawzx mutant. The results demonstrate that Wzx proteins from O-antigen systems that use N-acetylglucosamine or N-acetylgalactosamine for the initiation of the biosynthesis of the O repeat can fully complement the formation of O16 LPS. Partial complementation was seen with Wzx from Pseudomonas aeruginosa, a system that uses N-acetylfucosamine in the initiation reaction. In contrast, there was negligible complementation with the Wzx protein from Salmonella enterica, a system in which galactose is the initiating sugar. These results support a model whereby the first sugar of the O repeat can be recognized by the O-antigen translocation machinery.
Resumo:
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.
Resumo:
Spatial analysis was used to explore the distribution of individual species in an ectomycorrhizal (ECM) fungal community to address: whether mycorrhizas of individual ECM fungal species were patchily distributed, and at what scale; and what the causes of this patchiness might be. Ectomycorrhizas were extracted from spatially explicit samples of the surface organic horizons of a pine plantation. The number of mycorrhizas of each ECM fungal species was recorded using morphotyping combined with internal transcribed spacer (ITS) sequencing. Semivariograms, kriging and cluster analyses were used to determine both the extent and scale of spatial autocorrelation in species abundances, potential interactions between species, and change over time. The mycorrhizas of some, but not all, ECM fungal species were patchily distributed and the size of patches differed between species. The relative abundance of individual ECM fungal species and the position of patches of ectomycorrhizas changed between years. Spatial and temporal analysis revealed a dynamic ECM fungal community with many interspecific interactions taking place, despite the homogeneity of the host community. The spatial pattern of mycorrhizas was influenced by the underlying distribution of fine roots, but local root density was in turn influenced by the presence of specific fungal species.
Resumo:
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.