6 resultados para Subduction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for similar to 1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M similar to 6), previously unstudied, produced tephra (coded PL2) of a volume of 10-12 km(3) (11-13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5-59.5 wt%, K2O = 2.3-2.7 wt%, Al2O3 = 15.8-16.5 wt%, and P2O5 = 0.5-0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (> 10x mantle values), moderate enrichment in LREE (La/Yb similar to 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of > 600 km from the source. New high-precision C-14 dates suggest that the PL2 eruption occurred similar to 10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine C-14 dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 +/- A 64 C-14 years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas-early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of similar to 110 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel Iherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism. We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tofua volcano is situated midway along the Tonga oceanic arc and has undergone two phases of ignimbrite-forming activity. The eruptive products are almost entirely basaltic andesites (52 center dot 5-57 wt % SiO2) with the exception of a volumetrically minor pre-caldera dacite. The suite displays a strong tholeiitic trend with K2O <1 wt %. Phenocryst assemblages typically comprise plagioclase + clinopyroxene +/- orthopyroxene with microlites of Ti-magnetite. Olivine (Fo(83-88)) is rare and believed to be dominantly antecrystic. An increase in the extent and frequency of reverse zoning in phenocrysts, sieve-textured plagioclase and the occurrence of antecrystic phases in post-caldera lavas record a shift to dynamic conditions, allowing the interaction of magma batches that were previously distinct. Pyroxene thermobarometry suggests crystallization at 950-1200 degrees C and 0 center dot 8-1 center dot 8 kbar. Volatile measurements of glassy melt inclusions indicate a maximum H2O content of 4 center dot 16 wt % H2O, and CO2-H2O saturation curves indicate that crystallization occurred at two levels, at depths of 4-5 center dot 5 km and 1 center dot 5-2 center dot 5 km. Major and trace element models suggest that the compositions of the majority of the samples represent a differentiation trend whereby the dacite was produced by 65% fractional crystallization of the most primitive basaltic andesite. Trace element models suggest that the sub-arc mantle source is the residuum of depleted Indian mid-ocean ridge basalt mantle (IDMM-1% melt), whereas radiogenic isotope data imply addition of 0 center dot 2% average Tongan sediment melt and a fluid component derived from the subducted altered Pacific oceanic crust. A horizontal array on the U-Th equiline diagram and Ra excesses of up to 500% suggest fluid addition to the mantle wedge within the last few thousand years. Time-integrated (Ra-226/Th-230) vs Sr/Th and Ba/Th fractionation models imply differentiation timescales of up to 4500 years for the dacitic magma compositions at Tofua.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subduction modifies the cycling of Earth's volatile elements. Fluid-rich sediments and hydrated oceanic lithosphere enter the convecting mantle at subduction zones. Some of the sediments and volatile components are released from the subducting slab, promote mantle melting and are returned to the surface by volcanism. The remainder continue into the deeper mantle. Quantification of the fate of these volatiles requires an understanding of both the nature and timing of fluid release and mantle melting(1). Here we analyse the trace element and isotopic geochemistry of fragments of upper mantle rocks that were transported to the surface by volcanic eruptions above the Batan Island subduction zone, Philippines. We find that the mantle fragments exhibit extreme disequilibrium between their U-Th-Ra isotopic ratios, which we interpret to result from the interaction of wet sediment melts and slab-derived fluids with rocks in the overlying mantle wedge. We infer that wet sediments were delivered from the slab to the mantle wedge between 8,000 and 10,000 years ago, whereas aqueous fluids were delivered separately much later. We estimate that about 625 ppm of water is retained in the wedge. A significant volume of water could therefore be delivered to the mantle transition zone at the base of the upper mantle, or even to the deeper mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated Pb-208/Pb-204. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. U-238 and Ra-226 excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fonualei Spreading Center affords an excellent opportunity to evaluate geochemical changes with increasing depth to the slab in the Lau back-arc basin. We present H2O and CO2 concentrations and Sr, Nd, Pb, Hf and U-Th-Ra isotope data for selected glasses as well as new Hf isotope data from boninites and seamounts to the north of the Tonga arc. The Pb and Hf isotope data are used to show that mantle flow is oriented to the southwest and that the tear in the northern end of the slab may not extend east as far as the boninite locality. Along the Fonualei Spreading Center, key geochemical parameters change smoothly with increasing distance from the arc front and increasing slab surface temperatures. The latter may range from 720 to 866 degrees C, based on decreasing H2O/Ce ratios. Consistent with experimental data, the geochemical trends are interpreted to reflect changes in the amount and composition of wet pelite melts or super-critical fluids and aqueous fluids derived from the slab. With one exception, all of the lavas preserve both U-238 excesses and Ra-226 excesses. We suggest that lavas from the Fonualei Spreading Center and Valu Fa Ridge are dominated by fluid-fluxed melting whereas those from the East and Central Lau Spreading Centers, where slab surface temperatures exceed similar to 850-900 degrees C, are largely derived through decompression. A similar observation is found for the Manus and East Scotia back-arc basins and may reflect the expiry of a key phase such as lawsonite in the subducted basaltic crust.