155 resultados para Subdivision surfaces

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a novel non-linear optical technique enantiomeric excess within a translationally disordered overlayer on a metal surface has been monitored for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we show that a multilayer freestanding slot array can be designed to give an insertion loss which is significantly lower than the value obtainable from a conventional dielectric backed printed frequency selective surface (FSS). This increase in filter efficiency is highlighted by comparing the performance of two structures designed to provide frequency selective beamsplitting in the quasioptical feed train of a submillimeter wave space borne radiometer. A two layer substrateless FSS providing more than 20 dB of isolation between the bands 316.5â??325.5 GHz and 349.5â??358.5 GHz, gives an insertion loss of 0.6 dB when the filter is orientated at 45 incidence in the TM plane, whereas the loss exhibited by a conventional printed FSS is in excess of 2 dB. A similar frequency response can be obtained in the TE plane, but here a triple screen structure is required and the conductor loss is shown to be comparable to the absorption loss of a dielectric backed FSS. Experimental devices have been fabricated using a precision micromachining technique. Transmission measurements performed in the range 250â??360 GHz are in good agreement with the simulated spectral performance of the individual periodic screens and the two multilayer freestanding FSS structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain the surface stress changes due to the adsorption of metal monolayers onto metallic surfaces, a new model derived from thermodynamic considerations is presented. Such a model is based on continuum Monte Carlo simulations with embedded atom method potentials in the canonical ensemble, and it is extended to consider the behavior on different islands adsorbed onto (111) substrate surfaces. Homoepitaxial and heteroepitaxial systems are studied. Pseudomorphic growth is not observed for small metal islands with considerable positive misfit with the substrate. Instead, the islands become compressed upon increase of their size. A simple model is proposed to interpolate between the misfits of atoms in small islands and the pseudomorphic behavior of the monolayer.