3 resultados para Subcontracting
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The economical and environmental benefits are the central issues for remanufacturing. Whereas extant remanufacturing research focuses primarily on such issues in remanufacturing technologies, production planning, inventory control and competitive strategies, we provide an alternative yet somewhat complementary approach to consider both issues related to different channels structures for marketing remanufactured products. Specifically, based on observations from current practice, we consider a manufacturer sells new units through an independent retailer but with two options for marketing remanufactured products: (1) marketing through its own e-channel (Model M) or (2) subcontracting the marketing activity to a third party (Model 3P). A central result we obtain is that although Model M is always greener than Model 3P, firms have less incentive to adopt it because both the manufacturer and retailer may be worse off when the manufacturer sells remanufactured products through its own e-channel rather than subcontracting to a third party. Extending both models to cases in which the manufacturer interacts with multiple retailers further reveals that the more retailers in the market, the greener Model M relative to Model 3P.
Resumo:
Considering the confined and complex nature of urban construction projects, labor productivity is one of the key factors attributing to project success. With the proliferation of sub-contracted labor, there is a necessity to consider the ramifications of this practice to the sector. This research aims to outline how project managers can optimise productivity levels of sub-contracted labor in urban construction projects, by addressing the barriers that most restrict these efficiency levels. A qualitative research approach is employed, incorporating semi-structured interviews based on three case studies from an urban context. The results are scrutinised using mind mapping software and accompanying analytical techniques. The findings from this research indicate that the effective on-site management of sub-contracted labor has a significant impact on the degree of success of an urban development project. The two core barriers to sub-contracted labor productivity are; 1) ineffective supervision of sub-contracted labor, and 2) lack of skilled sub-contracted labor. The implication of this research is that on-site project management play an integral role in the level of productivity achieved by sub-contracted labor in urban development projects. Therefore, on-site management situated in urban, confined construction sites, are encouraged to take heed of the findings herein and address the barriers documented. The value of this research is obtained through consideration of the critical factors; construction management professionals can mitigate such barriers, in order to optimise subcontracted labor productivity on-site.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.