13 resultados para Structure and activity relationship
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.
Resumo:
Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.
Resumo:
Douglass North is a pivotal figure in the development of the 'new' economic history as well as the 'new' institutional economics. However, the relationship between these two aspects of his thinking remains undeveloped in previous critical assessments of North's work. The relationship is clarified here. The evidence presented indicates that three distinct phases can be distinguished in his writings between the 1950s and the 2000s. The paper relates these changing views to the shifting mainstream within economics and the effects that this shift has in turn had on economic history research. Economic history has adapted to economic research by abandoning some practices associated with the earlier cliometric literature. Furthermore, North is unique to the extent that his recent writings represent something of a convergence with 'old' institutionalism. © 2010 Taylor & Francis.
Resumo:
The structure and stability of palladium adlayers on Au(hkl) and Pt(hkl) were studied at different coverage degrees by means of Monte Carlo simulations using the interatomic potentials of the embedded atom model. In all cases the Pd films were found to grow epitaxially and pseudomorphically with the crystallographic orientation of the substrate. The differences and similarities of the adlayer with the substrate were analyzed.
Resumo:
To date, 9 FMRF amide-related peptides (FaRPs) have been identified in Caenorhabditis elegans. Eight of these peptides are encoded on the flp-1 gene. However, AF2 (KHEYLRF amide) which was not co-encoded was the most abundant FaRP identified in ethanolic extracts. Further radioimmunometrical screening of acidified ethanol extracts of C. elegans has revealed the presence of other novel FaRPs, which are not encoded on the flp-l gene. One of these peptides has been isolated by sequential rpHPLC and subjected to Edman degradation analysis and gas-phase sequencing and the unequivocal primary structure of the decapeptide Ala-Pro-Glu-Ala-Ser-Pro-Phe-Ile-Arg-Phe-NH2 was determined following a single gas-phase sequencing run. The molecular mass of the peptide was found to be 1133.7 Ha, determined using a time-of-flight mass spectrometer. Synthetic replicates of this peptide were found to induce a profound relaxation of both dorsal and ventral somatic muscle-strip preparations of Ascaris suum with a threshold for activity of 10 nM. The inhibitory response was not dependent on the presence of nerve cords, indicating a post-synaptic site-of-action. The relaxation was Ca++- and Cl--independent but was abolished in high-KI medium and could be distinguished from those of other inhibitory nematode FaRPs, including PF1 (SDPNFLRFamide)and PF1 (KPNFIRF amide). (C) 1997 Academic Press.
Resumo:
The activities of different types of PtRu catalysts for methanol oxidation are compared. Materials used were: UHV-cleaned PtRu alloys, UHV-evaporated Ru onto Pt(111) as well as adsorbed Ru on Pt(111) prepared with and without additional reduction by hydrogen. Differences in the catalytic activity are observed to depend on the preparation procedure of the catalysts. The dependence of the respective catalytic activities upon the surface composition is reported. UHV-STM data for Pt(111)/Ru show the formation of two- and three-dimensional structures depending on surface coverage. A molecular insight on the electrochemical reaction is given via in situ infrared spectroscopy. Analysis of the data indicates that the most probable rate-determining step is the reaction of adsorbed CO with Ru oxide.
Resumo:
Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2–) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1; P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2– increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.
Resumo:
Melt-mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites with 1–10 wt% MWCNTs were prepared by twin screw extrusion and compression moulded into sheet form. The compression moulded nanocomposites exhibit a 112% increase in modulus at a MWCNT loading of 4 wt%, and a low electrical percolation threshold of 1.9 wt%. Subsequently, uniaxial, sequential (seq-) biaxial and simultaneous (sim-) biaxial stretching of the virgin HDPE and nanocomposite sheets was conducted at different strain rates and stretching temperatures to investigate the processability of HDPE with the addition of nanotubes and the influence of deformation on the structure and final properties of nanocomposites. The results show that the processability of HDPE is improved under all the uniaxial and biaxial deformation conditions due to a strengthened strain hardening behaviour with the addition of MWCNTs. Extensional deformation is observed to disentangle nanotube agglomerates and the disentanglement degree is shown to depend on the stretching mode, strain rate and stretching temperatures applied. The disentanglement effectiveness is: uniaxial stretching < sim-biaxial stretching < seq-biaxial stretching, under the same deformation parameters. In sim-biaxial stretching, reducing the strain rate and stretching temperature can lead to more nanotube agglomerate breakup. Enhanced nanotube agglomerate disentanglement exhibits a positive effect on the mechanical properties and a negative effect on the electrical properties of the deformed nanocomposites. The ultimate stress of the composite containing 4 wt% MWCNTs increased by ∼492% after seq-biaxial stretching, while the resistivity increased by ∼1012 Ω cm.
Resumo:
In ring-tailed lemurs, Lemur catta, the factors modulating hypothalamic-pituitaryadrenal (HPA) activity differ between wild and semi-free-ranging populations. Here we assess factors modulating HPA activity in ring-tailed lemurs housed in a third environment: the zoo. First we validate an enzyme immunoassay to quantify levels of glucocorticoid (GC) metabolites in the faeces of L. catta . We determine the nature of the femalefemale dominance hierarchies within each group by computing David's scores and examining these in relation to faecal GC (fGC). Relationships between female age and fGC are assessed to evaluate potential age-related confounds. The associations between fGC, numbers of males in a group and reproductive status are explored. Finally, we investigate the value of 7 behaviours in predicting levels of fGC. The study revealed stable linear dominance hierarchies in females within each group. The number of males in a social group together with reproductive status, but not age, influenced fGC. The 7 behavioural variables accounted for 68% of the variance in fGC. The amounts of time an animal spent locomoting and in the inside enclosure were both negative predictors of fGC. The study highlights the flexibility and adaptability of the HPA system in ring-tailed lemurs.