199 resultados para Strengths

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective collision strengths for transitions among the lowest 97 fine-structure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(2), 3s3p(3), 3s(2)3p3d, 3p(4), 3s3p(2)3d and 3s(2)3d(2) configurations of Fe XIII have been calculated using the fully relativistic Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2004). Resonances have been resolved in the threshold region, and results are reported over a wide electron temperature range up to log T-e = 6.8 K. Comparisons are made with the earlier available R-matrix results of Gupta & Tayal (1998), and the accuracy of the data is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collision strengths for 4005 transitions among the lowest 90 levels of the (1s(2)2s(2)2p(6)) 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d, 3s3p(5)3d and 3s(2)3p(3)3d(2) configurations of Fe X have been calculated using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant, over a wide energy range up to 210 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to 107 K. The present calculations should represent a significant improvement ( in both range and accuracy) over the earlier available results of Bhatia & Doschek and Pelan & Berrington. Based on several comparisons, the accuracy of our data is assessed to be better than 20%, for a majority of transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiative rates for electric dipole (E I), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 60 fine-structure levels of the (1s(2)) 2S(2)2p(5), 2s2p(6), and 2S(2)2p(4)3l configurations of F-like Mo XXXIV have been calculated using the fully relativistic GRASP code. Additionally, collision strengths for transitions among these levels have been computed over a wide energy range below 3200Ry, using the Dirac Atomic R-matrix Code. Resonances have been resolved in a fine energy mesh in order to calculate the effective collision strengths. Results for radiative rates and excitation rates are presented for all transitions, and for collision strengths for transitions from the lowest three levels to the higher lying levels. The accuracy of the present data is assessed to be similar to 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collision strengths for transitions among the lowest 48 fine- structure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(4), 3s3p(5), 3s(2)3p(3)3d and 3p(6) configurations of Fe XI have been calculated using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Results are tabulated at energies above thresholds in the range 10 less than or equal to E less than or equal to 100 Ry, although resonances have been resolved in a fine energy mesh in the thresholds region. Effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are also tabulated over a wide electron temperature range below 5 x 10(6) K. Comparisons with other available results are made, and the accuracy of the present data is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective collision strengths for transitions among the energetically lowest 46 fine-structure levels belonging to the (1s(2)) 2S(2) 2p(2), 2s2p(3), 2p(4), 2S(2)2p3s, 2s(2)2p3p and 2S(2)2p3d configurations of Fe XXI are computed, over an electron temperature range of 5.6 less than or equal to log T-e less than or equal to 7.4 K, using the recent Dirac Atomic R- matrix Code (DARC) of Norrington and Grant. Results are presented for transitions within the ground configuration only, and are compared with earlier R matrix calculations. Large discrepancies are observed for many transitions, especially at lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy levels and radiative rates for transitions among 107 fine-structure levels belonging to the (1s(2)2S(2)p(6)) 3S(2)3p(6)3d(10), 3S(2)3p(6)3d(9)4e. 3S(2)3p(5)3d(10)4e. and 3s3p(6)3d(10)4e configurations of Ni-like Gd XXXVII have been calculated using the fully relativistic GRASP code. Radiative rates and oscillator strengths are tabulated for all allowed transitions among these levels. Additionally. collision strengths for transitions among the lowest 59 levels have been computed using the Dirac Atomic R-matrix Code. Resonances in the threshold region have been delineated, but results for collision strengths are tabulated only at energies above thresholds in the range 120

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collision strengths for transitions among the energetically lowest 53 fine-structure levels belonging to the (1s(2)2s(2)2p(6)) 3l(2), 3l3l', 3s4l and 3p4s configurations of Fe XV are computed, over an electron energy range below 160 Ryd, using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2003). Effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron energies, have also been calculated. These results of effective collision strengths are tabulated for all 1378 inelastic transitions over a wide temperature range of 10(5) to 10(7) K. Comparisons are also made with other R-matrix calculations and the accuracy of the results is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy levels and oscillator strengths (transition probabilities) have been calculated for transitions among 46 fine-structure levels of the (1s(2)) 2s(2) 2p(2), 2s2p(3),2p(4), 2s(2)2p3s, 2s(2) 2p3p and 2s(2)2p3d configurations of C-like K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX using the GRASP code. Configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels agree within 3% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy levels and radiative rates have been calculated for fine-structure transitions among the lowest 89 levels of the (1s(2)) 2s(2)2p(6), 2s(2) 2p(5) 3 l, 2s(2) 2p(5) 4l, 2s2p(6) 3 l, and 2s2p(6)4l configurations of Fe XVII using the GRASP code of Dyall et al. Collision strengths have also been calculated, for transitions among the lowest 55 levels, using the recently developed Dirac atomic R-matrix code (DARC) of Norrington & Grant. The results are compared with those available in the literature, and the accuracy of the data is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective collision strengths for transitions among the ten energetically lowest fine-structure levels belonging to the (1s(2)2s(2)2p(6))3s(2), 3s3p and 3p(2) configurations of Fe xv have been calculated in the electron temperature range of 10(5)-10(7) K, using the recent Dirac atomic R-matrix code of Norrington and Grant. The results are compared with the other recently available independent Breit-Pauli R-matrix calculations of Eissner et al (Eissner W, Galavis M E, Mendoza C and Zeippen C J 1999 Astron. Astrophys. Suppl. 137 165) and Griffin et al (Griffin DC, Badnell N R, Pindzola M S and Shaw J A 1999 J. Phys. B: At. Mol. Opt. Phys. 32 2139, 4129). Large differences are observed for many transitions over almost the entire temperature range. These differences are analysed and discussed, and the accuracy of the calculations is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy levels and oscillator strengths (transition probabilities) have been calculated for the fine-structure transitions among the levels of the (1s(2)) 2s(2)2p(2), 2s2p(3), 2p(4), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of C-like F IV, Na VI, Al VIII, P X, Cl XII, and Ar XIII using the CIV3 program. The extensive configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels generally agree within 5% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R-matrix calculations of electron impact excitation rates in N-like Mg vi are used to derive theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 269-403 Angstrom wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s(2)2p(3) S-4-2s2p(4) P-4 transitions at 399.28, 400.67, and 403.30 Angstrom, and the 2s(2)2p(3) P-2-2s2p(4) D-2 lines at 387.77 and 387.97 Angstrom. However, intensities for the other lines attributed to Mg vi in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg vi lines in the SERTS spectrum, such as 291.36 and 293.15 Angstrom, are judged to be noise, while others (including 349.16 Angstrom) appear to be blended.