34 resultados para Street cleaning

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple UV-activated, TiO2-based film or ink for removing thin oxide or sulfide layers from metal surfaces by reductive photocatalysis is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intelligent ink, previously shown to be capable of rapidly assessing photocatalytic activity, was simply applied via a felt-pen onto a commercially available piece of Activ (TM) self-cleaning glass. The ink, comprising of redox dye resazurin and the sacrificial electron donor glycerol within an aqueous hydroxy ethyl cellulose (HEC) polymer media, was photocatalytically degraded in a two-step process. The key initial stage was the photo-reductive conversion of resazurin to resorufin, whereby a colour change from blue to pink occurred. The latter stage was the subsequent photo-reduction of the resorufin, where a slower change from pink to colourless was seen. Red and green components of red-green-blue colour extracted from flat-bed scanner digital images of resazurin ink coated photocatalytic films at intervals during the photocatalysis reaction were inversely proportional to the changes seen via UV-visible absorption spectroscopy and indicative of reaction kinetics. A 3 x 3 grid of intelligent ink was drawn onto a piece of Activ (TM) and a glass blank. The photocatalysis reaction was monitored solely by flat-bed digital scanning. Red-green-blue values of respective positions on the grid were extracted using a custom-built program entitled RGB Extractor (c). The program was capable of extracting a number of 5 x 5 pixel averages of red-green-blue components simultaneously. Allocation of merely three coordinates allowed for the automatic generation of a grid, with scroll-bars controlling the number of positions to be extracted on the grid formed. No significant change in red and green components for any position on the glass blank was observed; however, the Activ (TM) film displayed a homogenous photo-reduction of the dye, reaching maxima in red and minima in green components in 23 +/- 3 and 14 +/- 2 min, respectively. A compositionally graded N-doped titania film synthesised in house via a combinatorial APCVD reaction was also photocatalytically tested by this method where 247 positions on a 13 x 19 grid were simultaneously analysed. The dramatic variation in photocatalysis observed was rapidly quantified for all positions (2-3 hours) allowing for correlations to be made between thicknesses and N : Ti% compositions attained from Swanepoel and WDX analysis, respectively. N incorporation within this system was found to be detrimental to film activity for the photocatalysis reaction of intelligent ink under 365 nm light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.