3 resultados para Storage proteins
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The genetic variation existing in a set of barley (Hordeum vulgare L.) landrace samples recently collected in Morocco was estimated. Two kinds of genetic markers, seed storage proteins (hordeins) and random amplified polymorphic DNA (RAPD), were used. Only six out of 31 landraces were subjected to RAPD analysis. Both kinds of markers, RAPD and storage proteins, yielded similar results, showing that the level of variation observed in Moroccan barley was high: all landraces showed variability; 808 different storage protein patterns (multilocus associations) were observed among 1897 individuals (2.32 seeds per association, on average) with an average of 43 multilocus associations per accession. In general, genetic variation within accessions was higher than between accessions. The 100 polymorphic RAPD bands generated by 21 effective primers were able to generate enough patterns to differentiate between uniform cultivars and even between individuals in variable accessions. One of the aims of this work was to compare the effectiveness of RAPD versus storage protein techniques in assessing the variability of genetic resource collections. On average hordeins were more polymorphic than RAPDs: they showed more alternatives per band on gels and a higher percentage of polymorphic bands, although RAPDs supply a higher number of bands. Although RAPD is an easy and standard technique, storage protein analysis is technically easier, cheaper and needs less sophisticated equipment. Thus, when resources are a limiting factor and considering the cost of consumables and work time, seed storage proteins must be the technique of choice for a first estimation of genetic variation in plant genetic resource collections.
Resumo:
Observational data show an inverse association between the consumption of whole-grain foods, and inflammation and related diseases. Although the underlying mechanisms are unclear, whole grains, and in particular the aleurone layer, contain a wide range of components with putative antioxidant and anti-inflammatory effects. We evaluated the effects of a diet high in wheat aleurone on plasma antioxidants status, markers of inflammation and endothelial function. In this parallel, participant-blinded intervention, seventy-nine healthy, older, overweight participants (45-65 years, BMI>25 kg/m²) incorporated either aleurone-rich cereal products (27 g aleurone/d), or control products balanced for fibre and macronutrients, into their habitual diets for 4 weeks. Fasting blood samples were taken at baseline and on day 29. Results showed that, compared to control, consumption of aleurone-rich products provided substantial amounts of micronutrients and phytochemicals which may function as antioxidants. Additionally, incorporating these products into a habitual diet resulted in significantly lower plasma concentrations of the inflammatory marker, C-reactive protein (P = 0·035), which is an independent risk factor for CVD. However, no changes were observed in other markers of inflammation, antioxidant status or endothelial function. These results provide a possible mechanism underlying the beneficial effects of longer-term whole-grain intake. However, it is unclear whether this effect is owing to a specific component, or a combination of components in wheat aleurone.
Resumo:
Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.