7 resultados para Steiner tree problem
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Adaptive Multiple-Input Multiple-Output (MIMO) systems achieve a much higher information rate than conventional fixed schemes due to their ability to adapt their configurations according to the wireless communications environment. However, current adaptive MIMO detection schemes exhibit either low performance (and hence low spectral efficiency) or huge computational
complexity. In particular, whilst deterministic Sphere Decoder (SD) detection schemes are well established for static MIMO systems, exhibiting deterministic parallel structure, low computational complexity and quasi-ML detection performance, there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation detection scheme. Fixed Complexity Sphere Decoding (FSD) and Real-Values FSD (RFSD) are modified and combined into a hybrid scheme exploited at low and medium SNR to provide the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, BChase and Decision Feedback (DFE) schemes are exploited in the high SNR regions. This algorithm provides the facility to balance the detection complexity with BER performance with compatible information rate in dynamic, adaptive MIMO communications
environments.
Resumo:
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that the following process continues for up to n rounds where n is the total number of nodes initially in the network: the adversary deletesan arbitrary node from the network, then the network responds by quickly adding a small number of new edges.
We present a distributed data structure that ensures two key properties. First, the diameter of the network is never more than O(log Delta) times its original diameter, where Delta is the maximum degree of the network initially. We note that for many peer-to-peer systems, Delta is polylogarithmic, so the diameter increase would be a O(loglog n) multiplicative factor. Second, the degree of any node never increases by more than 3 over its original degree. Our data structure is fully distributed, has O(1) latency per round and requires each node to send and receive O(1) messages per round. The data structure requires an initial setup phase that has latency equal to the diameter of the original network, and requires, with high probability, each node v to send O(log n) messages along every edge incident to v. Our approach is orthogonal and complementary to traditional topology-based approaches to defending against attack.
Resumo:
Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits).
Resumo:
This paper strengthens the NP-hardness result for the (partial) maximum a posteriori (MAP) problem in Bayesian networks with topology of trees (every variable has at most one parent) and variable cardinality at most three. MAP is the problem of querying the most probable state configuration of some (not necessarily all) of the network variables given evidence. It is demonstrated that the problem remains hard even in such simplistic networks.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [12, 14] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an Informative score function to characterize the quality of a k-tree. The proposed algorithm can efficiently learn a Bayesian network with tree-width at most k. Experiment results indicate that our approach is comparable with exact methods, but is much more computationally efficient.
Resumo:
Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.