20 resultados para Stearic acid

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The destruction of stearic acid (SA), the SA test, is a popular approach used to evaluate the activities of photocatalytic films. The destruction of SA via semiconductor photocatalysis is monitored simultaneously, using FT-IR spectroscopy, via the disappearance of SA and the appearance of CO2, Sol-gel and P25 films of titania are used as the semiconductor photocatalytic self-cleaning films. A conversion factor is used of 9.7 x 1015 molecules of SA cm(-2) 1 Cru-1 integrated areas of the peaks in the Fr-IR of SA over the range 2700-3000 cm(-1), which is three times that reported previously by others. As the SA disappeared the concomitant amount of CO2 generated was > 90% that expected throughout the photomineralisation process for the sol-gel titania film. In contrast, the slightly more active, and scattering, P25 fitania films generated CO2 levels that dipped as low as 69% during the course of the photoreaction, but eventually recovered to congruent to 100% that expected based on the amount of SA present. The importance of these results with respect to SA test and the evaluation of new and existing self-cleaning films are discussed briefly. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photonic efficiencies of films of Evonik (formerly Degussa) P25 TiO2 and carbon-modified TiO2 Kronos VLP 7000 samples are reported as a function of excitation wavelength (300–430 nm; FWHM ∼ 7.5 nm), i.e. the action spectra, for the degradation of stearic acid, a model organic for the photocatalytic destruction of solid surface organic pollutants. For each of these semiconductor photocatalysts, at 365 nm (FWHM = 18 nm), the dependence of the rate of degradation of stearic acid, upon the irradiance, I, is determined and the rate is found to be proportional to I0.65 and I0.82 for P25 and Kronos titania, respectively. Assuming this relationship holds at all wavelengths, the action spectra for two different semiconductor photocatalysts is modified by plotting, (RSA (rate of stearic acid destruction, units: molecules cm−2 s−1)/Iθ) vs. wavelength of excitation (λexcit), and both differ noticeably from those of the original (unmodified) action spectra, which are plots of (RSA/I = photonic efficiency, ξ) vs. λexcit. The shape of the modified action spectrum for P25 TiO2 is consistent with that reported by others for other organic mineralisation reactions and correlates well with diffuse reflectance data for P25 TiO2 (Kubelka–Munk plot), although there is some evidence that the active phase, in the photodegradation of stearic acid, is the anatase form present in P25. The unmodified and modified action spectra of the beige Kronos VLP 7000 TiO2 compound exhibits little or no activity in the visible i.e. (λexcit > 400 nm) and a peak at 350 nm. The Kronos powder contains a yellow/brown conjugated, extractable, organic sensitiser which has been identified by others as the species responsible for its reported photocatalytic visible light activity. But, irradiation of the Kronos powder film, with and without a stearic acid coating, in air, using UVA or visible light, bleaches rapidly (<60 min) most, if not all, of the little colour exhibited by the original Kronos powder. The photobleached form of the Kronos has a similar action spectrum to that of the unbleached form, which, in turn, appears very similar to that of P25 titania, at wavelengths >350 nm. It is proposed that the difference between the Kronos and P25 powder films at wavelengths <350 nm is due to a photodegradation-resistant, previously unidentified (but extractable using MeCN) UV-absorbing organic species in the former which screens the titania particles at these lower wavelengths. The implications of these observations are discussed briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A resazurin (Rz) based photocatalyst indicator ink is used to test the activity of a commercial self-cleaning glass, using UV–vis spectroscopy and digital photography to monitor the photocatalyst-driven change in colour of the ink. UV–vis spectroscopy allows the change in film absorbance, ΔAbs, to be monitored as a function of irradiation time, whereas digital photography is used to monitor the concomitant change in the red component of the RGB values, i.e. ΔRGB (red). Initial work reveals the variation in ΔAbst and ΔRGB (red)t as a function of irradiation time, t, are linearly correlated. The rates of change of these parameters are also linearly correlated to the rates of oxidative destruction of stearic acid on self-cleaning glass under different irradiances. This work demonstrates that a measure of photocatalyst activity of self-cleaning glass, i.e. the time taken to change the colour of an Rz photocatalyst indicator ink, can be obtained using inexpensive digital photography, as alternative to more expensive lab-based techniques, such as UV–vis spectrophotometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuing interest in semiconductor photochemistry, SPC, and the emergence of commercial products that utilise films of photocatalyst materials, has created an urgent need to agree a set of methods for assessing photocatalytic activity and international committees are now meeting to address this issue. This article provides a brief overview of two of the most popular current methods employed by researchers for assessing SPC activity. and one which has been published just recently and might gain popularity in the future, given its ease of use. These tests are: the stearic acid (SA) test, the methylene blue (MB) test and the resazurin (Rz) ink test, respectively. The basic photochemical and chemical processes that underpin each of these tests are described, along with typical results for laboratory made sol-gel titania films and a commercial form of self-cleaning glass, Activ (TM). The pros and cons of their future use as possible standard assessment techniques are considered. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust, active, anatase titania films, 250 nm thick, are deposited onto glass at low temperatures, i.e., 2.0 for the photocatalytic mineralization of stearic acid. These films are typically 6.9 times more active than a sample of commercial self-cleaning glass, comprising a 15 nm layer of fitania deposited by CVD, mainly because they are much thicker and, therefore, absorb more of the incident UV light. The most active of the films tested comprised particles of P25, but lacked any significant physical robustness. Similar results, but much more quickly obtained, were generated using a photocatalyst- sensitive ink, based on the redox dye, resazurin, Rz. All fitania films tested, including those produced by magnetrom sputtering exhibited photo-induced superhydrophilicity. The possible future application of PAR-DG-MS for producing very active photocatalytic films on substrates not renowned for their high temperature stabilities, such as plastics, is noted. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A controlled-atmosphere chamber, combined with a CCTV system, is used to monitor continuously the change in shape of water droplets on the self-cleaning commercial glass, Activ, and a sol-gel TiO2 substrate during their irradiation with either UVA or UVC light. This system allows the photoinduced superhydrophilic effect (PSH) exhibited by these materials to be studied in real time under a variety of different conditions. UVA was less effective than UVC in terms of PSH for both titania-coated glasses, and plain glass was unaffected by either form of UV irradiation and so showed no PSH activity. With UVA, ozone increased significantly the rate of PSH for both substrates, but had no effect on the wettability of plain glass. For both titania substrates and plain glass, no PSH activity was observed under an O-2-free atmosphere. A more detailed study of the PSH effect exhibited by Activ revealed that doping the water droplet with either an electron acceptor (Na2S2O8), electron donor (Na2S2O4), or simple electrolyte (KCl) in the absence of oxygen did not promote PSH. However, when Activ was UV irradiated, while immersed in a deoxygenated KCl solution, prior to testing for PSH activity, only a small change in contact angle was observed, whereas under the same conditions, but using a deoxygenated persulfate-containing immersion solution, it was rendered superhydrophilic. The correlation between organic contaminant removal and surface wetting was also investigated by using thick sol-gel films coated with stearic acid; the destruction of SA was monitored by FTIR and sudden wetting of the surface was seen to coincide with the substantial removal of the organic layer. The results of this work are discussed in the context of the current debate on the underlying cause of PSH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A brief overview of work carried out by this group on thick (> 1 mu m), optically clear, robust titania films prepared by a sol-gel method, as well as new results regarding these films, are described. Such films are very active as photocatalysts and able to destroy stearic acid with a quantum yield of 0.32%. The activity of such films is largely unaffected by annealing temperatures below 760 degrees C, but is drastically reduced above this temperature. The drop in photocatalyst activity of such films as a function of annealing temperature appears to correlate well with the change in porosity of the films and suggests that the latter parameter is very important in deciding the overall activity of such films. The importance of porosity in semiconductor photocatalysed cold combustion may be due to the effect it has on access of oxygen to the active sites, rather like the effect the position of a fire grate (open or closed) has on the rate of burning, i.e., hot combustion, that takes place in a fireplace.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Communication: Coatings Of Yellow gamma-WO3 are deposited on glass by APCVD of WOCl4 and either ethanol or ethylacetate at 350-450degreesC. The yellow films show significant photoactivity for the destruction of stearic acid, and photoinduced superhydrophilicity. Preparation of blue reduced WO2.92 films from the same reaction at higher substrate temperatures of 500-600degreesC (Figure) is also found to be possible. These films show no photoactivity, but can be converted into the fully stoichiometric photoactive form simply by heating in air.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thick paste TiO2 films are prepared and tested for photocatalytic and photoinduced superhydrophilic (PSH) activity. The films are effective photocatalysts for the destruction of stearic acid using near or far UV and all the sol-gel films tested exhibited a quantum yield for this process of typically 0.15 %. These quantum yields are significantly greater (4-8-fold) than those for titania films produced by an APCVD technique, including the commercial self-cleaning glass product Activ(TM). The films are mechanically robust and optically clear and, as photocatalysts for stearic acid removal, are photochemically stable and reproducible. The kinetics of stearic acid photomineralisation are zero order with an activation energy of ca. 2.5 Kj mol(-1). All titania films tested, including those produced by APCVD, exhibit PSH. The light-induced fall, and dark recovery, in the water droplet contact angle made with titania paste films are similar in profile shape to those described by others for thin titania films produced by a traditional sol-gel route. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pilkington Glass Activ(TM) represents a possible suitable successor to P25 TiO2, especially as a benchmark photocatalyst film for comparing other photocatalyst or PSH self-cleaning films. Activ(TM) is a glass product with a clear, colourless, effectively invisible, photocatalytic coating of titania that also exhibits PSH. Although not as active as a film of P25 TiO2, Activ(TM) vastly superior mechanical stability, very reproducible activity and widespread commercial availability makes it highly attractive as a reference photocatalytic film. The photocatalytic and photo-induced superhydrophilitic (PSH) properties of Activ(TM) are studied in some detail and the results reported. Thus, the kinetics of stearic acid destruction (a 104 electron process) are zero order over the stearic acid range 4-129 monolayers and exhibit formal quantum efficiencies (FQE) of 0.7 X 10(-5) and 10.2 x 10(-5) molecules per photon when irradiated with light of 365 +/- 20 and 254 nm, respectively; the latter appears also to be the quantum yield for Activ(TM) at 254 nm. The kinetics of stearic acid destruction exhibit Langmuir-Hinshelwood-like saturation type kinetics as a function of oxygen partial pressure, with no destruction occurring in the absence of oxygen and the rate of destruction appearing the same in air and oxygen atmospheres. Further kinetic work revealed a Langmuir adsorption type constant for oxygen of 0.45 +/- 0.16 kPa(-1) and an activation energy of 19 +/- 1 Kj mol(-1). A study of the PSH properties of Activ(TM) reveals a high water contact angle (67) before ultra-bandgap irradiation reduced to 0degrees after prolonged irradiation. The kinetics of PSH are similar to those reported by others for sol-gel films using a low level of UV light. The kinetics of contact angle recovery in the dark appear monophasic and different to the biphasic kinetics reported recently by others for sol-gel films [J. Phys. Chem. B 107 (2003) 1028]. Overall, Activ(TM) appears a very suitable reference material for semiconductor film photocatalysis. (C) 2003 Elsevier Science B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation and characterization of thick (9 mum), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003. using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acidification of an isopropanol solution containing mixtures of [Ti(OPri)(4)] and [W(OEt)(5)] produced solutions from which various TiO2, WO3 and TiO2/WO3 thin films could be obtained by dip coating and annealing. The films were analysed by X-ray diffraction, SEM/EDAX, Raman, electronic spectra, contact angle and photoactivity with respect to destruction of an over layer of stearic acid. The TiO2/WO3 films were shown to be mixtures of two phases TiO2 and WO3 rather than a solid solution TixWyO2. The 2% tungsten oxide doped titania films were shown to be the most effective photocatalysts. All of the TiO2 and TiO2/WO3 films showed light induced superhydrophillicity. (C) 2002 Elsevier Science Ltd. All rights reserved.