30 resultados para Stars : formation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5′, which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5′ are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/ II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase.

Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA.

Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations.

Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances similar to 10(-6)-10(-4) that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, similar to 10(-12)-10(-7). Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards T Tauri star-disk systems. There is poor agreement with HC3(N) lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA "Full Science" capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun's natal disk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE ) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS ) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible ") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ~800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary search for stars that may have formed coevally with the apparently young halo B-type star PHL 346 has been performed with the 2dF multifibre spectrograph on the Anglo- Australian Telescope (AAT). Candidates were selected for spectroscopy from APM scans of B and R Schmidt plates centred on PHL 346. A total of 476 stars of spectral type A or F were found; radial velocity estimates and more accurate spectral type assignments narrowed the number of possible coeval candidates to 6 A-type and 14 F-type stars. A statistical analysis of these results using a comparison with a control field suggests that the number of A-type or F-type candidate stars around PHL 346 is not unexpected, and that they need not be associated with PHL 346. A number of ways to improve the project are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution (R approximate to 40 000) echelle spectroscopic observations of 13 high-latitude early-type stars are presented. These stars comprise the final part of a complete magnitude range limited sample based on low-resolution spectroscopy of targets drawn from the Palomar-Green survey. The magnitude range under consideration is 13 less than or equal to B-PG less than or equal to 14.6, corresponding to an approximate distance limit for main-sequence B-type objects of 5 less than or equal to d less than or equal to 40 kpc. Three stars are found to be apparently normal, young stars, based on their positions on the (T-eff, log g) diagram, normal abundance patterns and relatively large projected rotational velocities. A further star, PG 1209+263, was found to belong to the chemically peculiar (CP) silicon star class of objects. The remainder are evolved subluminous stars lying on post- horizontal branch (post-HB) tracks, with the exception of PG 2120+062, which appears to be in a post-asymptotic giant branch evolutionary stage. For the young stars in the sample, we have derived distance and age estimates through comparison of the atmospheric parameters with recent theoretical evolutionary models. We discuss formation scenarios by comparing times-of- flight and evolutionary time-scales. It is found that all stars could have formed in the Galactic disc and been ejected from there soon after their birth, with the exception of PG 1209+263. The adopted proper motion is found to be a crucial factor in the kinematical analysis. We also present some number densities for young B-type halo stars, which indicate that they are extremely scarce objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present high-resolution spectroscopic observations of 21 B- type stars, selected from the Edinburgh-Cape Blue Object Survey. Model atmosphere analyses confirm that 14 of these stars are young, main-sequence B-type objects with Population I chemical compositions. The remaining seven are found to be evolved objects, including subdwarfs, horizontal branch and post-AGB objects. A kinematical analysis shows that all 14 young main-sequence stars could have formed in the disc and subsequently been ejected into the halo. These results are combined with the analysis of a previous subsample of stars taken from the Survey. Of the complete sample, 31 have been found to be young, main-sequence objects, with formation in the disc, and subsequent ejection into the halo, again being found to be a plausible scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High resolution echelle spectroscopy is presented for thirteen stars lying in the direction of the Galactic centre which, on the basis of photographic photometry and low dispersion spectroscopy, have been classified as early-B-type. Eight of these stars have large rotational velocities which preclude a detailed analysis. The five stars with moderate to low projected rotational velocities have been analysed using model atmosphere techniques to determine atmospheric parameters and chemical compositions. Two of these stars appear to be evolved blue horizontal branch objects on the basis of their chemical compositions and small projected rotational velocity. The evolutionary status of a third is ambiguous but it is probably a post-asymptotic-giant branch star. The remaining two objects are probably young massive stars and show enhanced abundances of N, C, Mg and Si, consistent with their formation in the inner part of the Galactic disk. However their O abundances are normal, confirming results found previously for other early- type stars, which would imply a flat abundance gradient for this element in the inner region of our Galaxy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of dust grains in the inner regions of late-type stars is shrouded in mystery due to the difficulty of understanding the growth of heterogeneous particles from simple atoms and molecules and the lack of observational data. This article reviews the molecular processes important in circumstellar envelopes and discusses how ALMA might be used to probe the dust formation zone either directly or indirectly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method ( Mokiem et al. 2005), which combines the stellar atmosphere code fastwind ( Puls et al. 2005) with the genetic algorithm based optimisation routine PIKAIA ( Charbonneau 1995). We derive an age of 7.0 +/- 1.0 and 3.0 +/- 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be similar to 49- 54 kK ( compared to similar to 45- 46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. ( 2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z similar to 1/2 Z(circle dot) environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D-mom as a function of luminosity with predictions for LMC metallicities by Vink et al. ( 2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0