4 resultados para Soybean

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW <500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thua nao, a traditional, proteolytic, fermented soybean condiment of northern Thailand, was prepared from cooked whole soybeans by natural flora fermentation. The microbial flora during the fermentation was dominated by Bacillus species. The formation of volatile compounds during the fermentation was studied. In addition, the volatile compounds of two samples of commercial dried thua nao and two samples of commercial Japanese natto were analysed. Fermentation led to a large increase in the concentration of total volatile compounds, from 35 mug kg(-1) wet weight in cooked soybeans to 3500 mug kg(-1) wet weight in 72h fermented material. The major volatile compounds in fermented beans were 3-hydroxybutanone (acetoin), 2-methlybutanoic acid, pyrazines, dimethyl disulphide and 2-pentylfuran. Sun drying of 72 h fermented material resulted in the loss of 65% of total volatiles, including important aroma compounds. The commercial dried thua nao samples had low concentrations of total volatile compounds (380 mug kg(-1) wet weight). It is suggested that improved drying/preservation methods are needed to retain aroma compounds in the traditional products. The natto samples were devoid of aldehydes, aliphatic acids and esters, and sulphur compounds, whereas the thua nao samples contained a diversity of these compounds. Previous investigators have reported these compounds in natto and it is not possible to suggest the existence of systematic differences between the volatile compounds in traditional thua nao prepared with an undefined, mixed microbial flora and those in natto fermented with Bacillus subtilis. (C) 2001 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.